摘要
据文 [1]中将导数f′(x)≤ 0放宽到函数f(x)的连续且右导数f+ ′(x)≤ 0或f-′(x)≤ 0 (f+ ′(x)≥ 0 (或f-′(x)≥ 0 ) ,则f(x)为仍为非增 (降 )的。文中进一步将条件放宽到具有上 (下 )导数的上 (下 )半连续函数 ,仍得到满意的结果。
The author in [1] has relaxed restrictions from f ′(x)≤0 to a continuous function and f_+′(x)≤0 or f_-′(x)≤0(f_+′(x)≥0 or f_-′(x)≥0). In this condition, the function is still a nonincreasing (nondecreasing) one. In this paper, the condition is relaxed to upper (lower) semi-continuous and upper (lower) derived function and the result is still satisfied.
出处
《贵州师范大学学报(自然科学版)》
CAS
2004年第3期90-91,共2页
Journal of Guizhou Normal University:Natural Sciences
关键词
上(下)导数
上(下)半连续函数
单调性
充要条件
极限
upper(lower) semi-continuous
upper(lower) derived function
upper(lower) semi-continuous function