期刊文献+

带有负顾客的双端排队系统 被引量:5

Double-ended Queue System with Negative Customers
在线阅读 下载PDF
导出
摘要 研究了有负顾客到达且系统空间有限的双端排队系统,队列顾客端为批量到达,到达间隔为一般分布,而服务端为泊松到达。论文用补充变量法,通过迭代给出了系统的稳态概率。最后对顾客单个到达且到达间隔为Γ分布的情形给出了更明确的表达式。 The double-ended queue system with negative customers and limited waiting space for both ends is discussed under the assumption that the interarrival time of customer end is taken as general distribution in batch and of sever end as Poission. Using the supplementary variable technique, the stable probability of the system is obtained recursively.The case that the arrival of customer is single and with Γ-distribution is considered as particular.
作者 尹小玲 苏健
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第4期14-18,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
关键词 双端队列 负顾客 批到达 被充变量法 bouble-ended queue negative customer batch arrival supplementary variable technique
  • 相关文献

参考文献9

  • 1BRANDTA,BRANDTM.On th eM(n)/M(n)/squeue with impatient calls [ J]. Performance Evaluation, 1999, 35:1 -18.
  • 2CONOLLY B W, PARTHASARATHY P R, SELVARAJU N.Double-ended queues with impatience [ J ]. Computers & Operations Research, 2002,29: 2053 - 2072.
  • 3GAUR K N,KASHYAP B R K.The double-ended queue with limited waiting space[J]. Indian J Pure Appl Math , 1973,4(1):73-81.
  • 4SHARMA O P, NAIR N S K. Transient behaviour of a double ended markovian queue [ J ]. Stochastic Anal Appl, 1991,9(1):71-83.
  • 5FOURNEAU J M,GELENBE E, SUROS R.G-networks with multiple classes of negative and positive customers [ J ].Theoretical Computer Science, 1996,155:141 - 156.
  • 6GELENBE E, GLYNN P, SIGMAN K, Queues with negative arrivals[J] .J Appl Prob, 1991,28:245 - 250.
  • 7HARRISON P G, PITEL E. The M/G/1 queue with negative customers[ J]. A dv Appl Prob, 1996,28: 540 - 566.
  • 8GELENBE E,FOURNEAU J M.G-networks with resets[J].Performance Evaluation,2002,49:179- 191.
  • 9.[M].,..

同被引文献42

  • 1陈佩树,朱翼隽,王晓春.有反馈、强占型的M/G/1重试排队系统[J].统计与决策,2006,22(9):4-6. 被引量:1
  • 2余玅妙,唐应辉.反馈次数服从几何分布的M/G/1排队系统的队长分布[J].电子学报,2007,35(2):275-278. 被引量:6
  • 3Kendall D G. Some problems in the theory of queues [ J ].Journal of the Royal Statistical Society, 1951, 13 (2) :151 -185.
  • 4Dobbie J N. A double-ended queueing problem of Ken- dall[J]. Ops Res, 1961, 9(5): 755-757.
  • 5Kashyap B R K. A double-ended queueing system with limited waiting space [J]. Proc Nat Inst Sci India, 1965, 31A: 559-570.
  • 6Conolly B W, Parthasarathy P R, Selvaraju N. Double- ended queues with impatience[ J ]. Computers and Ope- rations Research, 2002, 29:2053 -2072.
  • 7Sundell H, Tsigas P. Luck-free deques and doubly linked lists [ J ]. J Parallel Distrib Comput, 2008, 68 (7) : 1008 - 1020.
  • 8Elmasry A, Jensen C, Katajainen J. Two new methods for constructing double-ended priority quenes from prio- rity queues[J].Computing, 2008, 83(4) :193 -204.
  • 9Ateneia I, Moreno P. A single-server retrial queue with general retrial limes and Bernoulli schedule[ J]. Applied Mathem Aries and Computation, 2005,162 (2) : 855 - 880.
  • 10Kumar B K, Madheswari S P. The M/G/I retrial queue with feedback and starting failures [ J ]. Applied Mathe- matical Modelling, 2002, 26( 11 ) : 1057 - 1075.

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部