期刊文献+

一种复杂多维层次的连接和聚集算法 被引量:1

A Join and Aggregate Algorithm for Complex Multi-Dimensional Hierarchies
在线阅读 下载PDF
导出
摘要 由于数据仓库中存储着不同粒度、容量巨大的数据记录 ,所以如何有效地执行联机分析处理 (OLAP)查询操作 ,特别是连接和聚集操作 ,便成为数据仓库领域的核心问题之一 为此 ,提出了一种降低连接和聚集操作的新算法 (joinandaggregationbasedonthecomplexmulti dimensionalhierarchies,JACMDH) 算法充分考虑了复杂多维层次的特点 ,在原有的位图连接索引 (bitmapjoinindex)的基础上 ,采用层次联合代理 (hierarchycombinedsurrogate)和预先分组排序的方法 ,使得复杂的多维层次上的连接和聚集操作转化成事实表上的区域查询 ,从而在处理多维层次聚集的同时 ,提高了连接和聚集的效率 算法性能分析和实验数据表明 ,JACMDH算法和目前流行的算法相比 。 Enormous volume of data reside in data warehouse, so it is important to process efficiently expensive queries including join and aggregate operation. In this paper, a new method (JACMDH algorithm) is proposed for processing time-consuming join and aggregate operation. This algorithm takes into consideration the characteristics of the complex multi-dimensional hierarchies and adopts hierarchy combined surrogate/pre-grouping and pre-sorting on the basis of bitmap join index. It improves the join and aggregate efficiency by translating join and aggregate operation of complex multi-dimensional hierarchies into range queries of fact table. The performance analysis and the experimental result, show that the performance of JACMDH algorithm can be improved dramatically, compared with current method for aggregation query evaluation.
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第8期1345-1351,共7页 Journal of Computer Research and Development
基金 福建省自然基金项目 (A0 3 10 0 0 8) 福建省高新技术研究开放计划重点基金项目 ( 2 0 0 3H0 43 )
关键词 数据仓库 OLAP 多维层次 位图连接索引 层次联合代理 聚集查询 data warehouse OLAP multi-dimensional hierarchies bit join index hierarchy combined surrogate aggregate query
  • 相关文献

参考文献16

  • 1S Chaudhuri, U Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 1997, 26(1): 65~74
  • 2O Neil, P D Quass. Improved query performance with variant indexes. ACM SIGMOD Record, 1997, 26(2): 38~49
  • 3D Srivastava, S Dar, H Jagadish, et al. Answering queries with aggregation using views. In: T M Vijayaraman, A P Buchmann,C Mohan, et al eds. Proc of the 22nd Int'l Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 1996. 318~329
  • 4K Ushijima, S Fujiwara, I Nishizawa, et al. SUPRA: A sampling-query optimization method for large-scale OLAP. In:Proc of the 9th Int'l Conf on Database and Expert Systems Applications. Oakland: IEEE Computer Press, 1998. 232~237
  • 5F Olken, D Rotem. Simple random sampling from relational databases. The 12th VLDB, Kyoto, Japan, 1986
  • 6F Olken, D Rotem. Random sampling from B + trees. The 15th VLDB, Amsterdam, Netherlands, 1989
  • 7F Olken. Random sampling from databases: [Ph D dissertation].Berkeley: University of California, 1993
  • 8K Sin Ht, K Yun-Ht, K Sang-Wook, et al. Improving the processing of queries in data warehousing environment. In: Proc of the 9th Int'l Conf on Database and Expert Systems Applications. New York: Springer, 2002. 669~675
  • 9C Li, X S Wang. A data model for supporting on-line analytical processing. In: K Barker, U Manitoba, eds. Proc of the 5th Int'l Conf on Information and Knowledge Management CIKM' 96.New York: ACM Press, 1996. 81~88
  • 10E Bertino, W Kim. Indexing technique for queries on nested objects. IEEE Trans on Knowledge and Data Engineering, 1989,13(2): 196~214

二级参考文献7

  • 1Chaudhuri, S., Dayal, U. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 1997,26(1):65~74.
  • 2O'Neil, P, Quass, D. Improved query performance with variant indexes. ACM SIGMOD Record, 1997,26(2):38~49.
  • 3Srivastava, D., Dar, S., Jagadish, H.V., et al. Answering queries with aggregation using views. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., et al, eds. Proceedings of the 22nd International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1996. 318~329.
  • 4Sameet, A., Rakesh, A., Prasad, M.D., et al. On the computation of multidimensional aggregates. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., et al, eds. Proceedings of the 22nd International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1996. 506~521.
  • 5Weipeng, P.Y., Per-Ake, L. Eager aggregation and lazy aggregation. In: Umeshwar, D., et al, eds. Proceedings of the 21st International Conference on Very Large Data Bases. Z黵ich: Morgan Kaufmann Publishers, 1995. 345~357.
  • 6Graefe, G. Query evaluation techniques for large databases. ACM Computing Surveys, 1993,25(2):73~130.
  • 7蒋旭东,周立柱.数据仓库查询处理中的一种多表连接算法[J].软件学报,2001,12(2):190-195. 被引量:30

共引文献13

同被引文献6

  • 1文娟,薛永生,翁伟,林子雨.数据仓库中的一种提高多表连接效率的有效方法[J].计算机研究与发展,2005,42(11):2010-2017. 被引量:5
  • 2Grandi F.A relational multi-schema data model and query language for full support of schema versioning[C]//Proc of the 10th SEBD, 2002.
  • 3Bebel B,Eder J,Koncilia C,et al.Creation and management of versions in muhiversion data warehouses[C]//ACM SAC 2004,March 2004,Nieosia,Cypres,ACM ISBN 1-58113-812-1.
  • 4Bebel B,Krolikowski Z,Wrembel R.Formal approach to modeling a muhiversion data warehouse[R].Bulletin of the Polish Academy of Sciences,Technical Sciences,2006,54( 1 ).
  • 5Wrembel R,Morzy T.Multiversion data warehouses:challenges and solutions[C]//Proc of the 3rd IEEE Conference on Computational Cybernetics(ICCC 2005),Mauritius,April 2005.
  • 6Morzy T,Wrembel R.On querying versions of multiversion data warehouse[C]//Proc of the 7th ACM Int Workshop on Data Warehousing and OLAP, Washington , USA, November 2004:92-101.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部