期刊文献+

PERIODIC SOLUTIONS OF THIRD-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS 被引量:2

PERIODIC SOLUTIONS OF THIRD-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS
在线阅读 下载PDF
导出
摘要 The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2002年第2期145-154,共10页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(1 9971 0 2 6 )
关键词 periodic solution abstract continuation theorem a- priori estimate coincidence degree functional differential equation periodic solution,abstract continuation theorem,a- priori estimate,coincidence degree, functional differential equation
  • 相关文献

参考文献9

  • 1Reissig, R., Periodic solutions ofa third-order nonlinear differential equation, Ann. Mat. Pura Appl., 1972,92(4):193-198.
  • 2Afuwape,A.U.,Omari, P., Zanolin, F., Nonlinear perturbation of differentialoperators with nontrivial kernel and applications to third-order periodic boundary valueproblems, J.Math. Appl., 1989.143:35-56.
  • 3Andres,J. Existence, uniqueness, and instability of large-period Harmonies to thethird-order nonlinear ordinary differential equations, J.Math. Anal. Appl.,1996,199:445-457.
  • 4Andres,J., Periodic boundary value problem for certain nonlinear differentialequations of the third order, Math. Slovaca, 1985,35:305-309.
  • 5Ezeilo,J.O.C., On the existence of periodic solutions of a certain third-orderdifferential equation, Proc. Cambridge Philos. Soc., 1960,56:381-389.
  • 6Ezeilo,J.O.C., Periodic solutions of third-order differential equations in the pasttwenty five years or so, invited paper presented at the "2nd Pan-African Congress ofthe African Mathematical Union, 23-29,March 1986,University of Jos, Nigeria."
  • 7Zhang Zhengqiu, Wang Zhicheng, On the existence of periodic solution of third-orderfunctional differential equations, Funkcialaj Ekvacioj, 2000,43:461-469.
  • 8Mawhin,J., Topological Degree Methods in Nonlinear Boundary Value Problems, CBMSRegional Conf. Ser. in Math., Vol. 40, Amer. Math. Soc., Providence, RI,1979.
  • 9Zeidler,E., Nonlinear Functional Analysis, Vol.1, Springer, New York,1986.

同被引文献1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部