期刊文献+

基于遗传算法的交通信号机器学习控制方法 被引量:14

Machine-Learning Traffic Signal Control Approach Based on Genetic Algorithm
原文传递
导出
摘要  通过对到达车辆数目的模糊分类,将交通信号控制方案以不同规则集的形式实施,根据实际控制效果利用遗传算法对规则集进行改进,形成了一种具有机器学习能力的单路口交通信号新控制方法.经过仿真实验,对该方法的控制效果与定时控制和感应控制进行了比较,仿真实验的结果说明该方法的控制效果明显优于传统控制方式. The traffic signal control schemes are put in the form of rule-sets into use through fuzzy classifying the arrived cars in this paper. Genetic algorithm is applied to improve the rule-sets according to the effect of actual controlling. These procedures form a new machining-learning traffic signal control approach for isolated intersection. After simulating, the control effect of this new approach with fixed-time control method and actuated control method are compared. The result of simulating illustrates that the effect of the new approach is obviously better than the traditional ones.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2004年第8期130-135,共6页 Systems Engineering-Theory & Practice
关键词 机器学习 交通信号控制 遗传算法 交通仿真 machining-learning traffic signal control genetic algorithms traffic simulation
  • 相关文献

参考文献3

  • 1[2]Baher Abdulhai,Rob Pringle.Machine learning based adaptive signal control using autonomous Q-learning agent[A].Proceeding of the IASTED International Conference.Intelligent Systems and Control[C].Honolulu,Hawaii,USA.August 14-16,2000:320-327.
  • 2[3]Ella Bingham.Reinforcement learning in neuro-fuzzy traffic signal control[J].European Journal of Operational Research,2001,131:232-241.
  • 3[4]Dusan Teodorovic,etc.Intelligent isolated intersection[A].IEEE International Fuzzy System Conference 2001.276-279.

同被引文献141

引证文献14

二级引证文献487

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部