期刊文献+

密闭鼓风炉锌产量的支持向量机实时预报模型

A Real-time Model for Forecasting Zinc Output by Support Vector Machining in Imperial Smelting Furnace
在线阅读 下载PDF
导出
摘要 为优化密闭鼓风炉的操作参数,建立了锌产量的实时预报模型。该模型采用分类SMO方法训练支持向量机回归模型,并根据若干步的误差来在线校正模型参数,对锌产量进行多步预报,以及时调整操作参数,并能在线学习预报模型。该预报模型的工业仿真表明在只有较少的样本数的情况下,在有效误差范围内能达到90%,且具有很好的实时性。该模型已应用于密闭鼓风炉操作优化与故障诊断系统,能较好地指导生产。 A real-time model for forecasting zinc output by support vectors machine (SVM) is presented in order to optimize operational parameters of imperial smelting furnace (ISP). In this model, the learning method sequential minimal optimization (SMO) of the support vectors regression based on the support vectors for classification is adopted, the parameters of the model is adjusted by the errors of some steps, and the learning can be carried out on line. The industrial simulation results show that the practical forecast range of this model is up to 90%. This model has been applied to a system for optimization operation and fault diagnosis in ISP, and supervised production well.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第12期16-18,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(2002cb312200) 国家自然科学基金资助项目(50374079) 湖南省自然科学基金资助项目(01JJY2110)
关键词 支持向量机 回归 神经网络 密闭鼓风炉 锌产量 Support vectors machine Regression Neural network Imperial smelting furnace Zinc output
  • 相关文献

参考文献9

  • 1Vapnik V.The Nature of Statistical Learning Theory (the Second Edition). New York:Springer-Verlag, 1998
  • 2Smola A J,Bernhard S.A Tutorial on Support Vector Regression.NeuroCOLT2 Technical Report Series NC2-TR-1998-030,http: //www.neurocolt.com, 1998
  • 3Platt J C.Fast Training of Support Vector Machines Using Sequential Minimal Optimization [C].Advances in Kernel Methods:Support Vector Machines (Edited by Scholkopf B,Burges C,Smola A),Cambridge MA: MIT Press, 1998:185-208
  • 4桂卫华.流程工业CIMS的发展与展望[J].中国有色金属学报,1998,10.
  • 5李瑞娟 桂卫华 陈晓方.一种模糊聚类的多神经网络在密闭鼓风炉产量预测模型中的应用[C]..过程控制科学与技术(第13届中国过程控制年会论文集)[C].广州:华南理工大学出版社,2002-07.219-223.
  • 6田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53
  • 7陶卿,曹进德,孙德敏.基于支持向量机分类的回归方法[J].软件学报,2002,13(5):1024-1028. 被引量:46
  • 8田盛丰,黄厚宽.回归型支持向量机的简化算法[J].软件学报,2002,13(6):1169-1172. 被引量:27
  • 9王定成,方廷健,高理富,马永军.支持向量机回归在线建模及应用[J].控制与决策,2003,18(1):89-91. 被引量:83

二级参考文献15

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1999.
  • 2[2]Müller K R, Smola A J, Rats¨ch G, et al. Predicting timeserieswithsupport vector machines[A]. Proc ICANN′97[C]. New York: Springer,1997.999-1004.
  • 3[3]Drucker H, Burges C J, Kaufman L, et al. Support vector regression machines[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.155-161.
  • 4[4]Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.281-287.
  • 5[5]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. 5th Annual ACM Workshop COLT[C]. Pittsburgh: ACM Press,1992.144-152.
  • 6[6]Campbell C. Algorithmic approaches to training support vector machnies: A survey[A]. Proc ESANN′2000[C]. Belgium: D-Facto Publications,2000.27-36.
  • 7[7]Marsh L S, Albright L D. Economically optimum day temperature for greenhouse hydroponic lettuce production - Part 2: Results and simulations[J]. Trans ASAE,1991,34(3):557-562.
  • 8[8]Maksarov D, Chalabi Z S. Computing bounds on greenhouseenergyrequirementsusingboundederror approach[J]. Contr Eng Prac,1998,(6):947-995.
  • 9Mehrotra S,SIAM J Optimization,1992年,2卷,4期,575页
  • 10Cortes, C., Vapnik, V. Support vector networks. Machine Learning, 1995,20:273(297.

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部