期刊文献+

基于动态神经网络的PID参数整定与实时控制 被引量:21

PID parameter self-tuning and real-time control based on dynamic neural network
在线阅读 下载PDF
导出
摘要 提出了一种基于对角回归神经网络的PID控制器结构,给出了PID参数在线自整定的学习控制算法。为检验控制效果同时还使用了静态BP网络来整定PID参数,并在Matlab环境下,分别建立了基于对角回归神经网络和BP网络的液位实时控制系统。实际的控制效果说明,基于动态网络的PID控制器工作稳定,具有较好的鲁棒性。 A new type of adaptive PID controller using diagonal recurrent neural network (DRNN)is presented. An on-line learning algorithm based on PID parameter self-tuning method is given. In order to verify the performance of the proposed approach, a control method that PID parameters are automatically adjusted by back-propagation (BP) algorithm is also introduced. Two real-time level control systems are devised on the basis of DRNN and BP networks using Matlab. The experimental results indicate that the PID controller based on dynamic neural network possesses satisfactory stability and robustness.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第6期777-778,810,共3页 Systems Engineering and Electronics
基金 国家自然科学基金(60274020 69974017) 河北省自然科学基金(602621) 广西省自然科学基金(0135065)资助课题
关键词 对角回归神经网络 PID控制器 自适应控制 diagonal recurrent neural network PID controller adaptive control
  • 相关文献

参考文献3

  • 1Narendra K S, Parthasarathy K. Identification and Control of Dynamic Systems Using Neural Networks [J]. IEEE Trans. on Neural Networks, 1990,1(1):4-27.
  • 2Rovithakis George A. Tracking Control of Multi-Input Affine Nonlinear Dynamical Systems with Unknown Nonlinearities Using Dynamical Neural Networks [J]. IEEE Trans. on Systems, Man and Cybernetics,1999,29(2):179-189.
  • 3Ku C C,Lee K Y.Diagonal Recurrent Neural Networks for Dynamic Systems Control [J]. IEEE Trans. on Neural Networks, 1995,6(1):144-155.

同被引文献122

引证文献21

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部