期刊文献+

平稳序列的POT模型及其在汇率风险价值中的应用 被引量:12

The POT Model for the Stationary Sequenceand Its Application in Computing Value-at-Rrisk of Exchange Rates
在线阅读 下载PDF
导出
摘要 经典的极值模型要求数据是独立同分布的,本文考虑平稳序列,引入极值指标,并利用分串方法,建立POT模型,对VaR和CVaR进行估计,最后对日元/美元的汇率进行实证研究。通过比较发现,引入极值指标后,提高了VaR估计的精度。 The classic extreme value theory requests that sequence is independent and has identical distribution. We intro- (duce) the extremal index under the assumption that the sequence is stationary, and build a POT model by using the method of declustering, then calculate the estimates of VaR and CVaR. The computation result of JPY/USD foreign exchange rate presented at last proves that the accurate for the estimations has been improved by introducing the extremal index.
出处 《系统工程》 CSCD 北大核心 2004年第6期49-53,共5页 Systems Engineering
基金 南开大学-天津大学刘徽应用数学中心资助项目(T08)
关键词 POT模型 极值指标 风险价值 条件风险价值 The POT Model The Extremal Index Value-at-Risk Conditional Value-at-Risk
  • 相关文献

参考文献10

  • 1Koedij K G, Schafgans M M A, De Vries C G. The tail index of Exchange rate returns[J]. Journal of International Economics,1990,29:93~108.
  • 2Reiss R D,Thomas M. Statical analysis of extreme values from insurance,finance,hydrology and other fields[M]. Birkhauser Verlag: Basel,2001.
  • 3Diebold F X, Schuermann T, Stroughair J D. Pitfalls and opportunities in the use of extreme value theory in risk management[Z]. Decision Technologies for Computational Finance, 1998:3~12.
  • 4McNeil,Alexander J. Extreme value theory for risk managers[R]. 1999.
  • 5Acerbi C,Tasche D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26: 1487~1503.
  • 6Coles S. An introduction to statistical modeling of extreme values[M]. Great Britain: Springer,2001.
  • 7Embrechts P, Mikosch T, Klüppelberg C. Modelling extremal events for insurance and finance [M]. New York:Springer,1997.
  • 8史道济,冯燕奇.多元极值分布参数的最大似然估计与分步估计[J].系统科学与数学,1997,17(3):244-251. 被引量:10
  • 9Shi D J. Moment estimation for multivariate extreme value distribution[J]. Applied Mathematics -A Journal of Chinese Universities B,1995,10:61~68.
  • 10尹剑,陈芬菲.介绍一种二元阈值方法在股票指数上的应用[J].数理统计与管理,2002,21(2):26-29. 被引量:6

二级参考文献8

  • 1[1]Harry Joe, Richard L.Smith, l shay Weissm. Bivariate Threshold Methods for Extremes[J].J.R.Statist.Soc.B, 1992,54(1):171-183.
  • 2[2]Sibuya, M., Bivariate Extreme Distribution [J].Ann. Inst. Stat. Math., 1960,11.
  • 3[3]Pickands, J., Multivariate Extreme Value Distribution[A]. In Proc. 43rd Sess. Int. Statist. Inst.[C].Buenos Aires 859-878.Amsterdam: lnt. Statist. lnst,1981.
  • 4[4]Tawn,J,A.,Bivariate Extreme Value Theory-Models and Estimation[J]. Biometrika, 1988,75:397-415.
  • 5史道济,Acta Math Appl Sin,1995年,11卷,421页
  • 6史道济,Biometrika,1995年,82卷,644页
  • 7史道济,Techn Rep 2074,1992年
  • 8成平,参数估计,1985年

共引文献13

同被引文献141

引证文献12

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部