期刊文献+

语音识别的自适应束剪枝方法 被引量:4

Adaptive Beam Pruning for Speech Recognition
在线阅读 下载PDF
导出
摘要 在语音识别的应用中,如何提高识别的效率性是一个重要的方向。尤其在大词汇表的识别中,庞大的搜索空间带来相应的计算代价,而传统剪枝方法在减少计算量的同时牺牲了识别率。为此引入自适应控制理论,自动调整束宽限定搜索空间在预定的规模。在此基础上,又提出了利用基线系统的平均激活模型音子模型实例作为自适应系统动态参考值的方法,实现启发式的束宽调节。应用此方法的解码器在不损失识别率情况下,计算时间和搜索空间比采用传统剪枝算法下降了55%和71%,显著地提高了解码器的效率。 In large vocabulary continuous speech recognition, huge spaces are searched during the recognition process, resulting in vast computational cost. While most pruning search strategies can reduce the computation, the recognition rate often decreases. Based on adaptive control theory,a novel pruning method that can automatically steer beam width to make search space attain a predefined size is presented. Average active phone-model-instance as the dynamic reference signal of the adaptive system is farther used. Compared with the base system which is integrated with fixed beam pruning and MAPMI pruning, the proposed method leads to a significant reduction in computing time and a slightly improvement in word accuracy. By measuring the RTF, this system is proved to have good real-time performances.
出处 《电声技术》 北大核心 2004年第8期41-45,共5页 Audio Engineering
基金 国家973重点基础研究发展项目资助(No.G1998030505).
关键词 语音识别 自适应束剪枝 音子模型 束宽调节 搜索空间 speech recognition search algorithm adaptive beam pruning phone-Model-Instance(PMI)
  • 相关文献

参考文献8

  • 1N. Deshmukh, et al. An Efficient Public Domain LVCSR decoder. in Proceedings of Hub-5 Conversational Speech Recognition Workshop, Washington D.C., 1998-09.
  • 2K.J. Astrom, B. Wittenmark. Adaptive Control (2nd Ed.).Addison-Wesley, 1995.
  • 3Huang X., Acero A., Hon H.W. Spoken Language Processing: A Guide to Theory, Algorithm, and System Development. Prentice Hall PTR, Upper Saddle River, New Jersey. 2001.
  • 4H.V. Hamme, F.V. Aellen. An Adaptive-Beam Pruning Technique for Continuous Speech Recognition. In Proceedings of ICSLP, 1996. 2083-2086.
  • 5J.S. Jang, S.S. Lin. Optimization of Viterbi Beam Search in Speech Recognition. In Proceedings ISCSLP, 2002.177-180.
  • 6V. Steinbiss, B.H. Tran, H. Ney. Improvements in Beam Search. In Proceedings ICSLP, 1994. 2143-3146.
  • 7J. J. Odell, V. Valtchev, P. C. Woodland, S. J. Young.A One-Pass Decoder Design for Large Vocabulary Recognition. In Proceedings of the DARPA Human Language Technology Workshop, 1995-03. 405-410.
  • 8S.C. Lee, G.R. Glass. Real-time Probabilistic Segmentation for Segment-based Speech Recognition. In Proceedings of ICSLP, 1998.

同被引文献31

  • 1谢凌云,杜利民,刘斌.嵌入式语音识别系统的快速高斯计算实现[J].计算机工程与应用,2004,40(23):30-31. 被引量:2
  • 2黄昆.嵌入式,语音识别技术新趋向[J].中国计算机用户,2006(45):46-46. 被引量:1
  • 3Suontausta J.,Fast decoding in large vocabulary name dialing,ICASSP,2000.
  • 4Janne Suontausta,Fast Decoding Techniques for Practical Real-time Speech Recognition System,IEEE Workshop ASRU99,Keystone,Clorado,1999.
  • 5Imre Kiss,Marcel Vasilache,Low Complexity Technique for Embedded ASR System,ICSLP,Denver,Colorado USA,2002.
  • 6张国亮 郑方.基于两层词法树的大词表连续语音识别搜索算法[A]..第六届全国人机语音通讯学术会议[C].,2001.239-242.
  • 7李峰 浦剑涛.基于声韵母建模基元拼接和整词识别的非特定人孤立词语音识别系统的研究[A]..第七届全国人机语音通讯会议[C].,2003.87-90.
  • 8李净 徐明星.汉语连续语音识别中声学模型基元比较.音节、音素、声韵母[A]..第六届全国人机语音通讯会议[C].,2001.267-271.
  • 9Fang Zheng and Guoliang Zhang.Integrating the energy information into MFCC,International Conference on Spoken Language Processing (ICSLP' 00),pp.Ⅰ-389~292,Oct.16-20,Beijing.
  • 10Yong,S.,Kershaw,D.,Odell,J.,Ollason,D.,Valtchev,V.and Woodland,P.,The HTK Book (for HTK Version 2.2),Cambridge University(1999).

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部