期刊文献+

基于Internet的并行遗传算法及其关键实现技术 被引量:2

Parallel genetic algorithms and its key technology based on Internet
在线阅读 下载PDF
导出
摘要 为解决大规模复杂优化问题,针对遗传算法的并行化原理和常用运行平台进行分析,提出了并行遗传算法新的应用平台———Internet,讨论了基于Internet的并行遗传算法(Internet basedparallelgeneticalgorithms,IPGA)实现中的关键问题,并给出其单向环拓扑的具体实现。实验表明,IPGA可显著节约寻优时间,提高寻优质量,并且能够充分利用互联网中闲置的计算机资源,节约运行成本,有助于解决巨量优化问题。 In order to solve the massive complicated optimization problems, the parallelization principle and the current application platform of genetic algorithm are analyzed, and a new application environment, Internet, is presented. Then the key problems of IPGA (Internet-based parallel genetic algorithm) are discussed. In the end, the ring topology is also implemented. Experimental results demonstrate that IPGA can not only evidently save the optimization time but also largely improve the optimization quality. At the same time, the algorithm can make full use of the idle computers on Internet and reduce the running cost, providing an effective solution to massive optimization problems.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第8期1102-1106,共5页 Systems Engineering and Electronics
关键词 并行遗传算法 INTERNET 并行计算 巨量优化 parallel genetic algorithms Internet parallel computation massive optimization
  • 相关文献

参考文献5

  • 1Neary Michael O, Christiansen Bernd O, Cappello Peter, et al.Javain: Parallel Computing on the Internet[J]. Future Generation Computer System, 1999(15): 659 - 674.
  • 2Pereira Claudio M N A, Lapa Celso M F. Coarse-Grained Parallel Genetic Algorithm Applied to a Nuclear Reactor Core Design Optimization Problem[J ]. Annual of Nuclear Energy, 2003 (30):555 - 565.
  • 3郭彤城,慕春棣.并行遗传算法的新进展[J].系统工程理论与实践,2002,22(2):15-23. 被引量:51
  • 4米凯利维茨.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 5Kazunori K, Hiroshi M, Masaaki I. Reduction of Communication Quantity for Network Based Parallel GA[A]. Proc. of the 2002Congress on Evolutionary omputation, Hawaii, 2002. 1715-1720.

二级参考文献2

共引文献53

同被引文献19

  • 1Holland J H.Adaptation in natural and artificial systerns[M]. University of Michigan Press,1975.
  • 2Goldberg D E.Genetic algorithms in ,search,optimization and machine Ieaming[M].Addison Wesley,Reading,MA,1989.
  • 3Shinya Watanabe,Tomoyuki Hiroyasu,Mitsunori Miki. Parallel evolutionary multi-criterion optimization for mobile telecommunication networks optimization[J].Evolutionary Methods for Design,Optimizxztion and Control,2002,167-172.
  • 4Pereira Claudio M N A,LapaCelso MF.Coarse-grained paralld gmetic algorithm applied to a nuclear reactor core design optimization problem[J].Annual of Nuclear Energy,2003(30):555-565.
  • 5Kazunori Kojima,Hiroshi Matsuo,Masaaki Ishigame.Reduction of communication quantity for network based parallel GA [C].Proc.of the Congress on Evolutionary Computation,2002,1715 -1720.
  • 6Erick Cautu-Paz,David E.Goldberg.Efficient parallel genetic algorithrrLs:theory and practice[J].Computer Methods in Applied Methanics and Engineering,2000:221-238.
  • 7Richmond J H.Scattering by a dieletric cylinder of arbitrary cross shape[J].IEEE Trans.on Antennas Propagat,1965:334-341.
  • 8[美]Z.米凯利维茨周家驹 何险峰译.演化程序—遗传算法和数据编码的结合[M].北京:科学出版社,2000.257-260.
  • 9Holland J H. Adaptation in natural and artificial systems[M]. University of Michigan Press, 1975.
  • 10Goldberg D E. Genetic algorithms in search, optimization and machine learning[M]. Addison Wesley, Reading, MA, 1989.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部