期刊文献+

胶州湾浮游植物rbcL基因分子遗传多样性研究 被引量:4

Molecular genetic diversity of phytoplankton rbcL gene in Jiaozhou Bay
在线阅读 下载PDF
导出
摘要 利用聚合酶链式反应扩增胶州湾表层海水浮游植物核酮糖 1,5 二磷酸羧化 /氧化酶大亚基基因 (rbcL )片段 ,建立了该基因片段变异类型文库 .随机测定了 2 8个rbcL片段序列 ,依此初步分析了胶州湾表层海水浮游植物rbcL基因分子遗传多样性 .结果表明 ,春季胶州湾表层海水浮游植物优势种群为D类rbcL代表的浮游植物 ,其中隐藻占 2 8 6 %、Stramenopies占 32 1%、定鞭藻占 2 8 6 %、红藻占 3 6 % .B类rbcL 代表的浮游植物为绿藻 ,占 7 1% .根据各操作分类单元丰度计算的分子遗传多样性指数为 2 85 ,根据逆翻译成的氨基酸序列计算的序列多样性为 0 2 0 . The variants of a 500 base pair fragment of RubisCo large subunit gene(rbcL)from the phytoplanktonic DNA of Jiaozhou Bay surface seawater were amplified by using polymerase chain reaction and cloned.Twenty-eight clones were randomly selected and sequenced,which were further used to determine the molecular genetic diversity of the phytoplankton of Jiaozhou Bay surface seawater.Systematic analysis showed that the clones representing cryptophyta counted for 28.6%,Stramenopiles 32.1%,Haptophyta 28.6%,Rhodophyta 3.6% and Chlorophyta 7.1%.The sequences from Cryptophyta,Stramenopiles,Haptophyta and Rhodophyta belonged to type D of Form I rbcL and Chlorophyta to type B,indicating that the dominant phytoplankton were those represented by type D rbcL.The genetic diversity index and the reversely translated amino acid sequence diversity of Jiaozhou Bay phytoplankton were 2.85 and 0.20,which were determined by the abundances of operational taxonomy units and the reversely translated amino acid sequences respectively.
出处 《应用生态学报》 CAS CSCD 2004年第9期1626-1632,共7页 Chinese Journal of Applied Ecology
基金 国家自然科学基金资助项目 ( 4 0 1760 2 8)
关键词 浮游植物 核酮糖 1 5-二磷酸羧化/氧化酶大亚基基因 分子遗传多样性 Phytoplankton, Ribulose-1,5-bisphosphate carboxynase/oxygenase large subunit gene(rbcL), Molecular genetic diversity.
  • 相关文献

参考文献2

二级参考文献75

  • 1[1]Aharon O. 2002. Molecular ecology of extremely halophilic Archaea and Bacteria.FEMS Microbiol Ecol,39(1):1~7
  • 2[2]Alm DW, Zheng D, Raskin L.2000. The presence of humic substances and DNA in RNA extracts affects hybridization results.Appl Environ Microbiol,66:4547~4554
  • 3[3]Amann RI, Ludwig E,Schleifer KH.1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol Rev,59:143~169
  • 4[4]Andreas TP, Hosbond C, Nybtoe O. 2001. Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil.FEMS Microbiol Ecol,38(1):59~67
  • 5[5]Becker S, Boger P, Oehlmann. 2000. PCR bias in ecological analysis :A case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol,66(11):4945~4953
  • 6[6]Bjrklf K, Jorgensen KS.2001. Applicability of non-antibiotic resistance marker genes in ecological studies of introduced bacteria in forest soil.FEMS Microbial Ecol,38(2-3):179~188
  • 7[7]Borneman J, Hartin RJ. 2000. PCR primers that amplify fungal rRNA genes from environmental samples.Appl Environ Microbiol,66(10):4356~4360
  • 8[8]Buchan A, Alber M, Hodson RE. 2001. Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenic spacer region.FEMS Microbiol Ecol,35(3):313~321
  • 9[9]Buckley DH, Schmidt TM. 2001. Environmantal factors influencing the distribution of rRNA from verrucomicrobia in soil.FEMS Microbiol Ecol,35(1):105~112
  • 10[10]Burk T, Smmith H.1997.Editorial.Molecular Ecol,6:103

共引文献59

同被引文献180

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部