期刊文献+

关于P叶α型λ-Bazilevich函数的性质 被引量:2

Properties of P-Valent λ-Bazilevich functions of type α
在线阅读 下载PDF
导出
摘要 引进P叶α型λ—Bazilevich函数族,讨论族中函数的从属关系,函数族的包含关系并得到准确界的实部不等式,偏差定理和系数不等式。 The class of P- Valent λ-Bazilevich functions of type α is introduced. The subordination relation and including relation of the class of functions are discussed. A real part inequality with exact bound, the distortion theorem and the coefficient inequality are obtained.
作者 李书海
机构地区 赤峰学院数学系
出处 《黑龙江大学自然科学学报》 CAS 2004年第3期40-44,共5页 Journal of Natural Science of Heilongjiang University
基金 内蒙古自治区高等学校科学研究项目(NJ02110)
关键词 λ-Bazilevich函数 P叶函数 从属 λ-Bazilevich function P-Valent function subordination bound
  • 相关文献

参考文献7

  • 1[1]SINGH R. On Bazilevich functions[J]. Proc Amer Math Sci, 1973, 38: 261-267.
  • 2[2]OWA S, OBRADOVIC M. Certain subclasses of Bazilevich functions of type α[J]. Internat J Math and Math Sci, 1986, 9(2):97- 105.
  • 3[3]OWA S. On certain Bazilevich functions of order β[J]. Internat J Math and Math Sci, 1992, 15(3): 613-616.
  • 4马万仑.关于β级α凸函数[J].数学学报,1986,29(2):207-212.
  • 5[5]MILLER S S,MOCANU P T.Differential subordination and univalent functions[J].Michigan Math J,1981,28:157-171.
  • 6[6]ROGOSINSKI W W.On the coefficents of subordinate functions[J].Proc London Math Soc,1943,48:48-82.
  • 7李书海.关于β级的α+iμ型λ-Bazilevich函数的几个不等式[J].数学进展,2004,33(2):169-173. 被引量:10

二级参考文献7

  • 1[1]Singh R. On Bazievich functions [3]. Proc. Armer. Math. Sci., 1973, 38: 261-267.
  • 2[3]Miller S S, Mocanu P T and Reade M O. Allalpha Convex functions are univalent and stalike [J]. Proc.Amer. Soc., 1973, 37: 553-554.
  • 3[4]OWa S. On certain Bazilevich functions of orderβ [J]. Internat. J. Math. Sci., 1992, 15(3): 613-616.
  • 4[5]OWa S. Nunokawa M. Properties of certain analytic functions [J]. Math. Japonica, 1988, 33: 577-582.
  • 5[6]Miller S S and Mocanu P T. Second order differential inequalities in the complex plane [J]. J. Math. Anal.Anpl., 1978, 65: 289-305.
  • 6[7]Miller S S and Mocanu P T. Differential subordination and univalent functions [J]. Midligan Math. J., 1981,28: 157-171.
  • 7宫贵福.一类近于凸函数[J].黑龙江大学自然科学学报,1991,8(2):10-16. 被引量:1

共引文献9

同被引文献13

  • 1李书海,木林.有关近于凸函数的一族解析函数[J].数学杂志,2005,25(4):428-434. 被引量:17
  • 2Singh R. On Bazilevic functions[J]. Proc Amer Math Sci, 1973, 28(2): 261-267.
  • 3Owa S. On certain Bazilevic functions of order β[J]. Internet J Math and Math Sci, 1992, 15(3) : 613-616.
  • 4Liu Ming-sheng. On the Univalent of Certain Analytic functions[J]. Advancesin in Mathematics, 1999, 28(4): 368-370.
  • 5Miller S S, Mocanu P T. Differential subordination and uinvalen functions[J]. Michigan Math J, 1981, 28: 157-171.
  • 6Shaffer D B. Distortion theorem for special classes of analytic functions[J]. Proc, AMS 1993, 39:281-287.
  • 7Singh R.On Bazileviv functions[J].Proc Amer Math Sci,1973,38:261-271.
  • 8Owa S.On certain Bazilevic functions of order β[J].Internat J Math and Math Sci,1992,15(3):613-616.
  • 9Liu M S.On the univalency of certain analytic functions[J].Advance In Mathematics,1999,28(4):368-370.
  • 10Miller S S,Mocanu P T.Differential subordinations and univalent functions[J].Michigan Math J,1981,28:157-171.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部