期刊文献+

汽油样品类型的模式识别研究与应用 被引量:10

Investigation and Application of Gasoline Sample Identity Technique
在线阅读 下载PDF
导出
摘要 研究了应用化学计量学方法解决汽油单体烃的气相色谱分析中单体烃定性库的自动选择问题。通过提取汽油单体烃谱图中的29个组分及其含量信息作为特征值,利用主成分分析法对不同工艺得到的催化裂化汽油、焦化汽油、直馏汽油、重整汽油和烷基化汽油进行分类,结合相似分析方法(即SIMCA方法)建立了各类汽油样本的类模型,借助这些类模型可以实现对未知样本的类型判别。所提出的识别方法可方便快速地判别待分析样品所属的汽油类别,并据此推荐适合该样品的定性模型库,从而实现汽油单体烃的快速、自动分析。 Chemometrics method was used to solve the problem of automatic selecting model for the detailed hydrocarbon analysis (DHA) of gasoline samples by gas chromatography/flame ionization detection (GC/FID). The 29 peaks in GC/FID DHA chromatogram and their amounts were selected as the discriminating parameters to establish the five pattern models for different gasoline samples, such as fluid catalytic cracking (FCC) gasoline, coking gasoline, straight run gasoline, reformed gasoline, and alkylation gasoline. The principle component analysis (PCA) and Soft Independent Modeling of Class Analogies (SIMCA) were used to classify the gasoline samples and to identify the unknown samples according to the above pattern models. One hundred gasoline samples, derived from known resources, were employed to validate the reliability of the sample identity technique. With the help of the pattern identity method referred here, the automation of GC/FID DHA method becomes possible.
出处 《色谱》 CAS CSCD 北大核心 2004年第5期482-485,共4页 Chinese Journal of Chromatography
关键词 单体烃 汽油 模式识别 SIMCA detailed hydrocarbon gasoline pattern recognition Soft Independent Modeling of Class Analogies (SIMCA)
  • 相关文献

二级参考文献4

共引文献13

同被引文献117

引证文献10

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部