期刊文献+

SiC_w和纳米SiC_p混杂增强铝基复合材料的制备与评价 被引量:10

Fabrication and evaluation of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles
在线阅读 下载PDF
导出
摘要 采用湿成型法制备了体积分数可以调节的碳化硅晶须与纳米碳化硅颗粒混杂的预制块,确定了挤压铸造法制备混杂增强铝基复合材料的工艺参数。通过扫描电镜和透射电镜分析发现:复合材料中晶须与纳米颗粒分布均匀,并与基体合金的界面结合良好,无界面反应物和孔洞;与基体合金相比,混杂增强复合材料的抗拉强度和弹性模量明显增高,延伸率降低;在晶须体积分数一定时,随纳米SiC颗粒体积分数的增加,复合材料的抗拉强度升高。 Hybrid performs with a controllable volume fraction of SiC whiskers and nanoscale SiC particles were made by wet blending. Manufacturing process of Al matrix hybrid composites reinforced with whiskers and nanoparticles by squeeze casting route were studied. SEM and TEM observation results show that the reinforcements distribute homogenously in the matrix, and the interfacial bonding between matrix and reinforcement is well. Compared with the matrix alloy, tensile strength and elastic modulus of the hybrid composites increase obviously, while the elongation decreases. When the volume fraction of SiC whiskers is a constant, tensile strength of the hybrid composites increases with the increasing content of SiC particles.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第7期1101-1105,共5页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(50071018)
关键词 复合材料 挤压铸造 晶须 纳米颗粒 混杂 composites squeeze casting whisker nanoparticle hybrid
  • 相关文献

参考文献10

  • 1[1]WANG G S, GENG L, ZHENG Z Z, et al. Investigation of compression of SiCw/6061Al composites around the solidus of the matrix alloy[J]. Materials Chemistry and Physics, 2001, 70(2): 164 - 167.
  • 2[2]Jung S W, Lee J H, Nam J B, et al. Analysis of strengthening mechanism in hybrid short fiber/particle reinforced metal matrix composites[J]. Key Engineering Materials, 2000, 183:1297 - 1302.
  • 3[3]ZHANG X N, GENG L, WANG G S. Microstructure and tensile properties of Al hybrid composites reinforced with SiC whiskers and SiC nanoparticles[J].Key Engineering Materials, 2003, 249: 277 - 282.
  • 4[6]Xu H, Palmiere E J. Particulate refinement and redistribution during the axisymmetric compression of an Al/SiCp metal matrix composites[J]. Composites(part A), 1999, 30(3): 203-211.
  • 5[7]Ko B C, Yoo Y C. Hot-deformation behaviour of AA2124 composites reinforced with both particles and whiskers of SiC[J]. Composites Science and Technology, 1998, 58(3-4): 479-485.
  • 6[8]Haber J A, Gunda N V, Buhro W E. Nanostructure by design: solution-phase-processing poutes to nanocrystalline metals, ceramics, intermetallics, and composites[J]. J Aerosol Sci, 1998, 29(5-6): 637-645.
  • 7[11]El-Eskandarany M S. Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites[J]. Journal of Alloys and Compounds, 1998, 279(2): 263 -271.
  • 8[15]Yamauchi T, Nishida Y. Infiltration kinetics of fibrous performs by aluminum with solidification[J].Acta Metall Mater, 1995, 43(4): 1313.
  • 9[16]Geng L, Ochiai S, Peng H X. Fabrication of nanocrystalline ZrO2 particle reinforced aluminum alloy composite by squeeze casting route[J]. Script Materialia, 1998, 38(4): 551 - 557.
  • 10[17]Cardinal S, R′Mili M, Merle P. Improvement of high pressure infiltration behaviour of alumina platelet preforms: manufacture and characterization of hybrid performs[J]. Composites(part A), 1998, 29(11):1433- 1441.

同被引文献122

引证文献10

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部