期刊文献+

一类非线性波动方程整体解的不存在性

Global nonexistence for a nonlinear wave equation
在线阅读 下载PDF
导出
摘要 运用PotentialWell方法研究了一类四阶非线性波动方程初边值问题整体解的不存在性 .首先定义了该问题的位势深度d ,然后运用索伯列夫空间中的嵌入定理结合Sobolev Hardy不等式证明位势深度d >0 ,再恰当地构造能量函数E(t) ,运用反证法证明了该问题整体解的不存在性 .当初值满足K(u0 ) <0 ,J(u0 ) <d ,E( 0 ) <d时 ,该问题没有整体解 .这里的K(·)和J(·)是2个泛函 . The global nonexistence of a fourth order wave equation is studied using Potential Well method. Potential depth of this problem is defined first. By using Sobolev-Hardy inequality and the theory of embedding in Sobolev space, it is proved that the potential depth is a positive number. Finally, the energy function E(t) is appropriately constructed global nonexistence is verified by using reduction to absurdity. It is shown that the problem has no global solution when its initial value satisfy K(u 0)<0,J(u 0)<d,E(0)<d. Here K(·) and J(·) are two functions.
作者 李刚 于勇
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第5期690-693,共4页 Journal of Southeast University:Natural Science Edition
关键词 波动方程 POTENTIAL WELL Sobolev—Hardy不等式 整体解的不存在性 wave equation Potential Well Sobolev-Hardy inequality global nonexistence
  • 相关文献

参考文献4

  • 1Varlamov V. On the damped Boussinesq equation in a circle [J]. Non Ana, 1999, 38: 447-470.
  • 2Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J]. Trans Amer Math Soc, 2000, 352(12): 5703-5743.
  • 3Todorova G. Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms [J]. J Math Ana and App, 1999, 239: 213-226.
  • 4陈才生.一类非线性梁方程整体解的不存在性[J].南京大学学报:数学半年刊,2002,19(2):275-254.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部