期刊文献+

含有理想导体的准分形结构光子晶体的能带 被引量:8

Photonic band in quasi-fractal photonic crystal structure including idealized metal
原文传递
导出
摘要 用时域有限差分方法计算了一组具有相似几何结构且包含理想金属材料的准分形光子晶体的能带 .数值计算结果表明 ,这种准分形结构光子晶体具有绝对带隙 ,且带隙的宽度会随着分形级数的增大而增大 .同时 ,随着级数的增大 ,其能带在整体地趋向于高频端的同时 。 The photonic band of a set of quasi_fractal photonic crystals, which have similar structure and include idealized metal, is computed by finite_difference time_domain method. The result shows that there are photonic band gaps in this kinds of quasi_fractal photonic crystals. It is found that, with increasing fractal series, the width of the photonic band gap is enlarged, the frequency of the photonic band totally trends to high frequency quickly, at the same time, the photonic band is quickly hauled to line and become a energy level.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第9期3205-3210,共6页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :60 3 760 0 3 ) 深圳市科技计划项目 (批准号 :2 0 0 2 K1 65 )资助的课题~~
关键词 光子晶体 带隙 时域有限差法 分形级数 能带结构 photonic crystal, photonic band gap, fractal
  • 相关文献

参考文献21

  • 1Liu X D, Xu X S, Wang Y Q, Zhang D Z and Cheng B Y 2003 Chin. Phys. 12 992
  • 2Joannopoulos J D, Villeneuve P R and Fan S H 1997 Nature 386 143
  • 3Scalora M, Bloemer M J, Pethel A S, Dowling J P, Bowden C M and Manka A S 1997 J. Appl. Phys. 83 2377
  • 4Kushwaha M S and Djafari R B 2000 J. Appl. Phys. 88 2877
  • 5Zhang W Y, Lei X Y, Wang Z L, Zheng D G, Tam W Y, Chan C T and Ping S 2000 Phys. Rev. Lett. 84 2853
  • 6Rowson S, Chelnokov A and Lourtioz J M 1999 Electronics Letters 35 753
  • 7Yamamoto Noritsugu and Noda Susumu 1999 Jpn. J. Appl. Phys. 38 B 1282
  • 8Jin C J, Cheng B Y, Man B Y and Li Z L 2000 Phys. Rev. B 61 10762
  • 9Li Z Y, Zhang X D and Zhang X Q 2000 Phys. Rev. B 61 15738
  • 10Liu Z, Xu J J and Lin Z F 2003 Chin.Phys.Lett. 20 516

二级参考文献31

  • 1[1]E Yablonovitch.Photonic band-gap structures [J].J Opt Soc Amer B,1993(10):283-295.
  • 2[2]V Radisic,Y Qian,R Coccioli,T Itoh.Novel 2-D photonic bandgap structure for microstrip lines [J].IEEE Microwave and Guided Wave Lett,1998(8):69-71.
  • 3[3]F Falcone,T Lopetegi,M Sorolla.1-D and 2-D photonic bandgap microstrip structures [J].Microwave Opt Technol Lett,1999,22(9):411-412.
  • 4[4]T Lopetegi,M A G Laso,M J Erro,D Benito,M J Garde,F Falcone,M Sorolla.Novel photonic bandgap microstrip structures using network topology [J].Microwave Opt Technol Lett,2000,25(4):33-36.
  • 5[5]M A G Laso,T Lopetegi,M J Erro,D Benito,M J Garde,M Sorolla.Novel wideband photonic bandgap microstrip structures [J].Microwave Opt Technol Lett,2000,24(3):357-360.
  • 6[6]Quan Xue,K M Shum,Chi Hou Chan.Novel perforated microstrip PBG cell [J].Microwave Opt Technol Lett,2000,26(9):325-327.
  • 7[7]Mandelbrot B B.The Fractal Geometry of Nature [M].California:Freeman Company,1982.
  • 8[8]C Puente,J Romeu,R Pous,X Garcia,F Benitez.Fractal multiband antenna based on the Sierpinski gasket [J].Electron.Lett.,1996,32(1):1-2.
  • 9[9]C Puente,J Remeu,R Pous,A Cardama.On the behavior of the Sierpinski multiband antenna [J].IEEE Trans Antennas Propagat,1998,46(4):517-524.
  • 10[10]C P Baliarda,C B Borau,M N Rodero,J R Robert.An iterative model for fractal antennas:application to Sierpinski gasket antenna [J].IEEE Trans Antennas Propagat,2000,48(5):713-719.

共引文献49

同被引文献78

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部