期刊文献+

5阶mKdV方程的新精确周期解 被引量:1

New exact periodic solutions for the 5th-order mKdV equation
在线阅读 下载PDF
导出
摘要 在原Jacobi椭圆函数展开法的基础上,引进其余几种Jacobi椭圆函数———Glaisher符号,扩展了Liu等提出的Jacobi椭圆函数展开法.以5阶mKdV方程为例,借助数学软件Mathematica求得了其13组新精确周期解,这些解在极限条件下可退化为孤立波解和三角函数解. Based on Jacobi elliptic function expansion method,several Jacobi elliptic functions—Glaisher symbol are introduced,which modify Lius Jacobi elliptic function expansion method.Taking Itos 5th-order mKdV equation as a example,with aid of computer algebraic system—Mathematica, 13 families of new exact periodic solutions are obtained.These solutions can degenerate into solitary wave solutions or triangular function formal solutions.
出处 《西北师范大学学报(自然科学版)》 CAS 2004年第4期40-44,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10247008 10475074) 西北师范大学科技创新工程资助项目(NWNU-KJCXGC-215)
关键词 5阶mKdV方程 JACOBI椭圆函数 周期解 孤立波解 5th-order mKdV equation Jacobi elliptic function periodic solutions solitary solutions
  • 相关文献

参考文献29

二级参考文献33

  • 1Wu W T, Polynomial Equation-Solving and Its Application, Algorithms and Computation [M]. Berlin:Springer, 1994.1.
  • 2Wang Mingliang. Solitary wave solutions for variant Boussinesq equations[J]. phys Lett A, 1995,199:169-172.
  • 3Wang Mingliang, Zhou Yubin, Li Zhibin. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[ J ]. Phys Left A, 1996, (216) :67-75.
  • 4Yang Lei, Zhu Zhengang, Wang Yinghai. Exact solutions of nonlinear equations [ J ]. Phys Lett A, 1999,(260):55--59.
  • 5Chuntao Yan. A simple transformation for nonlinear waves[ J ]. Phys Lett A, 1996,224: 77-84.
  • 6Li Z B et al 1997 Acta Math. Sci. 17 81(in Chinese).
  • 7Li Z B et al 2001 Acta Phys. Sin. 50 2062(in Chinese).
  • 8Zhang G X et al 2000 Chin. Sci. (Ser. A) 30 1103(in Chinese).
  • 9Wang M L 1995 Phys. Lett. A 199 169.
  • 10Wang M L 1996 Phys. Lett. A 213 279.

共引文献541

同被引文献3

  • 1Jeffrey A,Mohamad MNB.Travelling wave solutions to a higher order KDV equation.Chaos,Solitons and Fractals 1991,20:765-769.
  • 2Miura RM.Backlund transformations,the inverse scattering method,solitons and their applications.New York:Springer,1976.
  • 3V.E.Zakharov,S.V.Manakov,S.P.Novikov,L.P.Pitajevski,The Theory of Solitons:The Inverse Problem Method,Nauka,Moskow,1980 (in Russian);V.B.Matveev,M.A.Salle,Darboux Transformations and Solitons,Sptinger-Verlag,Berlin,1991;C.Rogers,W.K.Schief,Backlund and Darboux Transformations,Cambridge University Press,2002.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部