摘要
对复分析中有理函数的积分条件进行削弱.讨论有理函数R(z)在半实轴x≥0上无极点时的反常积分;R(z)在半实轴x≥0上只有简单极点z=1时的反常积分的Cauchy主值(P.V.).建立 R(x)dx(或其Cauchy主值)与残数间的关系式定理.
Based on the weakening term of the integral complex analysis, this paper discusses abnormal integrals of the rational function R(z) without pole in the semi-real axis x≥0; also discusses the Cauchy principal value(P. V. ) of the abnormal integrals when R(z) only has pole z = 1 in the semi-real axis x≥
0; further,presents the theorem of relational expression between R(x)dx (or the Cauchy principal
value) and the residues.
出处
《海南大学学报(自然科学版)》
CAS
2004年第3期209-212,共4页
Natural Science Journal of Hainan University
关键词
有理函数
反常积分
柯西主值
极点
复分析
pole
rational function
abnonnal integrals
Cauchy principal value