期刊文献+

大湿度旋流扩散燃烧的变工况特性 被引量:6

The Character of Swirl Diffusion Humid Air Combustion under Different Work Conditions
在线阅读 下载PDF
导出
摘要 采用湍流雷诺应力微分模型和层流小火焰模型,对湿空气透平(HAT)带旋流器的燃烧室内甲烷扩散燃烧过程进行了数值模拟.对比了在加湿[200g/kg(DA)]和不加湿情况下,不同入口条件时[(304kPa,430K),(507kPa,510K),(709kPa,565K),(912kPa,612K)]的燃烧室内部温度、速度以及NO组分分布的情况,分析了不同入口条件及湿度对HAT循环燃烧室扩散燃烧特性的影响.研究表明,随着入口空气压力的提高,回流区减小,回流中心位置前移,燃烧区最高温度增加,NO浓度增大;随着入口湿度增大,回流区减小,回流中心位置前移,燃烧区最高温度明显下降,NO浓度明显下降.结果表明,加湿燃烧可以降低污染物的排放,有利于燃烧室轴线尺寸的缩小. A combustion simulation adopting the Reynolds stress model and the Laminar Flamelet model was performed to determine the effect of humidity in the combustion air on temperature, velocity and NO distributions of methane/air diffusion combustion in a swirl combustor. The research work was conducted at different moisture levels (0,200 g/kg(DA)) under different inlet conditions((304 kPa, 430 K), (507 kPa, 510 K), (709 kPa, 565 K), (912 kPa, 612 K)). The effects of different work conditions and different humidity on the temperature field, the velocity field and the NO distribution were well predicted. The calculation results show: with the increase of inlet pressure, the dimension of the reversed-flow region is smaller, the center of the reversed-flow region goes forward, peak temperature increases, and NO formation increases; with the adding of moisture, the dimension of the reversed-flow region is smaller, the center of the reversed-flow region goes ahead, peak temperature drops greatly, NO formation is reduced enormously. It is suggested that humid air combustion is helpful to reduce the formation of pollution, and to shorten the axial length of combustor.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第10期1617-1622,共6页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究(973)项目资助(G1999022303)
关键词 燃烧室 扩散燃烧 湿空气燃烧 燃烧模拟 combustor diffusion combustion humid air combustiom combustion simulation
  • 相关文献

参考文献7

  • 1[1]Blevins L G, Roby R J. An experimental study of NOx reduction in laminar diffusion flames by addition of high levels of steam [J/OL]. ASME paper 95-GT-327.
  • 2[2]Meyer J L, Grienche G. An experimental study of steam injection in an aeroderivative gas turbine [J/OL]. ASME paper 97-GT-506.
  • 3[3]Anuj Bhargava, Med Colket, William Sowa, et al.An experimental and modeling study of humid air premixed flames [J]. ASME Journal of Engineering for Gas Turbines and Power, 2000, 122: 405-411.
  • 4[4]Miyaughi T, Mori Y, Yamagughi T. Effect of steam addition on NO formation [A]. Eighteenth Symposium (International) on Combustion [C]. The Combustion Institute, Pittsburgh, Pennsylvania, 1981.43-51.
  • 5[5]Yang S L, Peschke B D, Hanjalic K. Second-moment closure model for IC engine flow simulation using KIVA code [J]. ASME J of Engineering for Gas Turbines and Power, 2000, 122: 355-363.
  • 6[6]Jones W P, White law J H. Calculation methods for reacting turbulent flows: a review [J]. Combust Flame, 1982, 48:1-26.
  • 7[7]Peeters Twj. Numerical modeling of turbulence natural-gas diffusion flames [D]. Netherlands: Delft Technical University, 1995.

同被引文献67

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部