期刊文献+

基于数据挖掘的异常入侵检测系统研究 被引量:6

Research of Anomaly Detection System Based on Data Mining
在线阅读 下载PDF
导出
摘要 网络上不断出现新的攻击方法,要求入侵检测系统具有能检测新的未知攻击的异常检测能力。本文提出了一个基于数据挖掘的异常入侵检测系统ADESDM。ADESDM系统提出了同时从网络数据的协议特征,端口号和应用层数据中挖掘可疑行为的方法。在挖掘过程中,不但采用了基于强规则的关联规则挖掘方法,还针对强规则挖掘方法的缺点,提出了基于弱规则的关联规则挖掘方法,来检测那些异常操作少,分布时间长等不易检测的的网络攻击。同时利用网络通信的时间、方向、端口号、主机地址等属性之间的影响,建立以各属性为节点的贝叶斯网络作为异常判别器,进一步判别关联规则挖掘中发现的可疑行为,提高了系统检测的准确率。 Intrusion detection system(IDS)must be capable of detecting new and unknown attacks. In this paper, we propose an Anomaly Detection System based on Data Mining(ADESDM). Firstly, ADESDM mine suspicious behaviors in the protocol header, ports and application data with strong association rules and weak association rules; then, it sends the suspicious behaviors to the Deciding Module based on Bayesian Belief Net (DMBBN). In real network communications, the attributes, such as time, direction, ports and IP addresses, are influencing each other. The DMBBN illustrates the conditional probabilities and relationship among the above attributes, and uses them to determine whether the suspicious behaviors are normal ones or attacks. Thus, system can reduce the false alarm rate.
出处 《计算机科学》 CSCD 北大核心 2004年第10期61-65,共5页 Computer Science
基金 国家863计划2001AA142010(智能入侵检测与预警系统) 2002AA141090(安全服务器)资助
关键词 入侵检测系统 关联规则挖掘 端口号 数据挖掘 异常检测 网络攻击 攻击方法 行为 影响 准确率 Anomaly intrusion detection, Data mine, Strong rule, Weak rule, Bayes net
  • 相关文献

参考文献16

  • 1Anderson, Debra, Lunt T F,Javitz H,Tamaru A, Valdes A. Detecting unusual program behavior using the statistical component of the Next-generation Intrusion Detection Expert System (NIDES), Computer Science Laboratory SRI-CSL 95-06 May 1995. http:∥www. sdl
  • 2Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992, 9(4) :309-347
  • 3Debar H, Becker M,Siboni D. A neural network compnent for an intrusion detectionsSystem [A]. IEEE Symposium on Security and Privacy [C] ,Okland: IEEE Computer Society, 1992. 256-266
  • 4Ghosh A K, Schwartzbard A, Schatz M. Learning Program Behavior Profiles for Intrusion Detection. In: Proc. of the 1st USENIX Workshop on Intrusion Detection and Network Monitoring, April, 1999, Santa Clara, CA. http:∥www. cigital. com/~anup/usenix_id99.
  • 5Javitz H,Valdes A. The SRI IDES statistical anomaly detector.In:Proc. of IEEE Symposium on Security and Privacy, 1991
  • 6Heckman D,Mandani A,Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3): 38 -45
  • 7Kendall, Kristopher. A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems. Masters Thesis, MIT, 1999
  • 8Lippmann R, et al. The 1999 DARPA Off-Line Intrusion Detection Evaluation. Computer Networks,2000,34 (4): 579-595
  • 9Mahoney M, Chan P K. Learning Nonstationary Models of Normal Network Traffic for Detectiong Novel Attacks. SIGKDD'02,Edmonton, Alberta,Canada, July 2002
  • 10Paxson, Vern. Bro: A System for Detecting Network Intruders in Real-Time. Lawrence Berkeley National Laboratory Proceedings.In: 7'th USENIX Security Symposium, Jan. 1998, San Antonio TX. http:∥www. usenix. org/publications/library/proceedings/sec98/paxso

同被引文献27

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部