期刊文献+

多学科设计优化:载人潜水器设计的一种新工具(英文) 被引量:22

Multidisciplinary Design Optimization (MDO): A promising tool for the design of HOV
在线阅读 下载PDF
导出
摘要 多学科优化作为一种新的设计方法,已经成功地应用在很多领域,如飞机制造,太空船,汽车制造等。传统的载人潜水器设计并不是一种最优的设计方法,并且在载人潜水器的设计过程中所要涉及多种技术学科。将多学科优化方法引进载人潜水器的设计,从而可以实现真正的设计优化。本文介绍了多学科优化的基本理论和方法,整体构架,并介绍了探索设计空间的算法。在对多学科优化设计方法理解的基础上,提出了在载人潜水器设计中如何应用的初步考虑。 MDO has been used for a variety of applications in such as aerospace, aircraft, and automobile industries as an efficient methodology of design optimization. The human occupied vehicle (HOV) design is related to several disciplines such as hydrodynamics, structural mechanics and control theory. There are the aims of maximizing performance under technology constraints and minimizing cost under performance constraints. However, the current design of HOV is the one that only is integrated the results of all disciplines, not an optimization design. With the traditional design approach, there is no guarantee that a systems-level focus will be taken and feasibility rather than optimality is commonly all that is achieved. To improve the HOV design and to solve the problem, application of multidisciplinary design optimization (MDO) is proposed. Using MDO methods can cast a HOV conceptual design problem into an optimization framework. This paper introduces the history of MDO, its theory and discusses the problem how to apply MDO in HOV design.
作者 刘蔚 崔维成
出处 《船舶力学》 EI 2004年第6期95-112,共18页 Journal of Ship Mechanics
关键词 多学科优化 载人潜水器 设计方法 设计空间 Aerospace applications Aircraft manufacture Automotive industry Constraint theory Design Optimization Performance
  • 相关文献

参考文献41

  • 1[1]Mosher T J. Improving spacecraft design using a multidisciplinary design optimization methodology[D].Ph.D thesis,Department of Aerospace Engineering Science, The University of Colorado, 2000.
  • 2[2]Salas A O, Townsend J C. Framework requirements for MDO application development[A]. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C], St. Louis, Missouri, paper no. AIAA 98-4740,1998.
  • 3[3]Rogers J L.Tools and techniques for decomposing and managing complex design projects[J].Journal of Aircraft, 1999,36(1):266-274.
  • 4[4]Kodiyalam S. Evaluation of methods for multidisciplinary design optimization, Phase I [R]. NASA/CR-1998-208716,1998.
  • 5[5]Alexandrov N M, Lewis R M. Analytical and computational aspects of collaborative optimization for multidisciplinary design[J]. Journal of Aircraft, 1999, 36(1):301-309.
  • 6[6]Hassan R A, Crossley W A. Multi-objective optimization of communication satellites with two-branch tournament genetic algorithm[J]. Journal of Spacecraft and Rockets, 2003,40(2):266-272.
  • 7[7]Lin C Y, Hajela P. Genetic search strategies in large scale optimization]A]. Proceedings of the AIAA/ASME/ASCE/ASC 34th Structures, Structural Dynamics, and Material Conference[C], AIAA, 1993.
  • 8[8]Mosher T J. Conceptual spacecraft design using a genetic algorithm trade selection process[J]. Journal of Aircraft, 1999,36(1):200-208.
  • 9[9]Rais-Rohani M, Hicks G R. Multidisciplinary design and prototype development of a micro air vehicle[J]. Journal of Aircraft, 1999, 36(1):227-234.
  • 10[10]Prabhat H.Nongradient methods in multidisciplinary design optimization-status and potential[J]. Journal of Aircraft, 1999,36(1): 255-265.

同被引文献121

引证文献22

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部