期刊文献+

基于环境参数融合的智能气体传感器设计 被引量:2

An Intelligent Gas Sensor Based on the Fusion of Ambient Parameters
在线阅读 下载PDF
导出
摘要 由于温度、湿度等环境参数对半导体气体传感器的测量精度有着较大的影响,对此提出了基于神经网络方法的智能气体传感器设计方法,利用神经网络对气体传感器的各种环境参数进行数据融合,以获取准确的被测气体浓度值。实验证明,该方法可以有效地提高气体传感器的测量精度,使气体传感器输出的满量程误差在±0 8%以内。通过该神经网络融合逆模型,还可以方便地根据环境参数的变化实现对气体传感器输出的补偿,从而实现传感器的智能化。 The effect of change in environment conditions, such as temperature and humidity, on the gas sensor is great. A scheme of an intelligent gas sensor using an artificial neural network (ANN) is proposed. In order to improve the accuracy of gas sensor, the inverse modeling based ANN is used to estimate the applied gas concentration. It is revealed from the simulation studies that this inverse model can provide correct concentration readout within ±0.8% full-scale error. When there is a change in ambient temperature and humidity, the inverse model can compensates for this change automatically. Consequently, the intelligent sensor is achieved.
作者 庄哲民
出处 《计量学报》 CSCD 北大核心 2004年第4期380-383,共4页 Acta Metrologica Sinica
基金 广东省自然科学基金(32030)
关键词 计量学 气体传感器 神经网络 环境参数 智能传感器 Metrology Gas sensor Artificial neural networks Ambient parameters Intelligent sensor
  • 相关文献

参考文献5

  • 1Madni A M, Yun Weijie, Wan L A. Micromachining and artificial neural networks: the future of smart sensing [ A ].IEEE Aerospace Applications Conference Proceedings [ C ],Aspen, USA:IEEE, 1995, 2: 117-130.
  • 2Rath S K, Partra J C. Kot A C. Intelligent pressure sensor with self-calibration capability using artificial neural networks [A]. IEEE International Conference Proceedings on Systems, Man and Cybernetics [ C ], Nashville, Tennessee,USA:IEEE, 2000, 4:2563 - 2568.
  • 3Patra J C, Van Den Bos A. Modeling of an intelligent pressure sensor using functional link artificial neural networks [J]. ISA Transactions, 2000, 39(1): 15-27.
  • 4张正勇,刘锦淮,张耀华.半导体氧化物气敏材料的电导振荡特性研究[J].传感技术学报,2000,13(1):13-17. 被引量:7
  • 5张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..

二级参考文献2

共引文献86

同被引文献23

引证文献2

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部