期刊文献+

多用户协作环境下的递归建模及合理决策 被引量:1

A Recursive Modeling and Rational Decision-Making in Multi-User Cooperative Environments
在线阅读 下载PDF
导出
摘要 本文针对多用户协同工作系统中的最大化协作效益问题 ,提出了对协作环境递归建模及基于模型分析的合理决策方法。模型容纳公共环境、他人环境及对其他协作者所建模型的预测等信息。较之传统方法优点在于 :不需预定协作任务分配协议 ,提高了决策的适应性 ,模型暗含协作信息 ,使决策更具合理性。最后 ,本文以实例展示建模决策的全过程 。 A recursive method to model the cooperative environment, which focuses on how to maximum the overall cooperative benefaction of a multi-client cooperative system, is presented in this paper. A rational decision-making method based on model analysis is also presented. The model contains the information of common and other clients’ environments, as well as the prediction of other cooperators’ models. Compared with traditional methods, it is more effective and rational. The complete procedure is shown with an example,and the complexity and application field of this method are analyzed.
作者 王慧华 朱娜
出处 《计算机工程与科学》 CSCD 2004年第12期94-96,100,共4页 Computer Engineering & Science
关键词 协作 递归 多用户 建模 任务分配 协同工作 模型 决策 信息 环境 recursive modeling rational decision-making utility matrix maximize utility
  • 相关文献

参考文献4

二级参考文献16

  • 1Stone, P., Veloso, M. Team-Partitioned, opaque-transition reinforcement learning.In: Asada, M., Kitano, H., eds, Robocup-98: Robot Soccer World CupII. Berlin: SpringerVerlag, 1999.
  • 2Kim, Do-Yoon, Chung, Myung Jin. Path planning for multi-mobil robots in the dynamicenvironment. In: Proceedings of the Micro-Robot World Cup Soccer Tournament. 1996. 127~132.
  • 3Noda, I., Matsubara, H., Hiraki, K., et al. Soccer server: a tool for research onmultiagent systems. Applied Artificial Intelligence, 1998,12:25~27.
  • 4Kitano, H., Asada, M., Kuniyoshi,Y., et al. A challenge problem. AI Magazine, 1997,18(1):73-85.
  • 5Stone, P., Veloso, M. Using machine learning in the soccer server. In: Proceedingsof the IROS Workshop on Robocup. Osaka, Japan, 1996. 105~203.
  • 6Uchibe, E., Asada, M., Hosoda, K. State space construction for behavior acquisitionin multi-agent environments with vision and action. In: Proceedings of the InternationalConference on Computer Vision. 1998. 870~875.
  • 7Salustowicz, R.P., Wiering, M.A., Schmidhuber, J. Learning team strategies: soccercase studies. Machine Learning, 1998,33: 263~282.
  • 8Sandholm, T.W., Crites, R.H. On multiagent Q-learning in a semi-competition domain.In: Weib, G., Sen, S., eds. Adaptation and Learning in Multiagent Systems. Berlin:Springer-Verlag, 1996. 188~190.
  • 9Sueyoshi T,Tokoro M.Dynamic Modeling of Agents for Coordination[J].Decentralized AI,1991,2:161-176.
  • 10HE Yan-xiang,DENG Ai-lin,DU Zhuo-min,et al.A Strategy for Conflict Resolution in MADCE[J].J of Wuhan Univ(Nat Sci Ed),1999,45(5A):561-565(Ch).

共引文献73

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部