期刊文献+

高速公路高填方路基沉降量的神经网络预测 被引量:5

NEURAL NETWORK PREDICTION OF THE HIGH-FILL ROAD FOUNDATION SETTLEMENT OF HIGHWAY
在线阅读 下载PDF
导出
摘要 利用BP神经网络较强的高次非线性映射能力和学习功能 ,建立了基于人工神经网络的高速公路路基沉降量的预测模型。该模型依据现场实测资料 ,避免了计算过程中各种人为因素的影响。通过对某高速公路高填方路基沉降量的现场监测成果的学习与预测检验 ,证明其预测精度与适用性良好 。 Through use of the stronger nonlinear mapping and learning ability of the back propagation neural network, the authors develop a new artificial neural network model to predict the settlement of highway foundation. This model avoids the errors caused by artificial factors during calculation since the model is established using all in-situ observation data. The results show that the model simulation matches well with in-situ observation of the highway foundation settlement, which demonstrates its applicability in the engineering practice.
出处 《工程地质学报》 CSCD 2004年第4期427-430,共4页 Journal of Engineering Geology
基金 上海市重点建设研究基金资助项目 湖南省自然科学基金资助项目 ( 0 0JJY0 5 5 )
关键词 高填方路基 高速公路 路基沉降 神经网络预测 沉降量 现场监测 工程 现场实测 计算过程 人工神经网络 Artificial neural network,Prediction model,Foundation of a highway,Settlement
  • 相关文献

参考文献2

  • 1Feng Xiating and Wang Yongjia.A neural network-based expert system on identifying probable failure modes for rock slope[J]. Proc.of International symposium on New Development in Rock Mechanics and Enginering, Northeastern University Press,1994.
  • 2Ghaboussi J., J.H. Garret, Jr and X.Wu.Knowledge-based modeling of material behavior with neural networks[J].Journal of Engineering Mechanics Division , ASCE,1991.

同被引文献56

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部