期刊文献+

谣言传播的Potts模型中的正则和微正则相变 被引量:2

The canonical and micro-canonical transitions of the Potts model for rumor
在线阅读 下载PDF
导出
摘要 使用1个新的非扩展能量模型研究统计物理学中的系综等效性问题.利用模型系统的配分函数和自旋组态数,分别在正则和微正则系综下计算系统的热力学函数自由能和熵等.计算结果显示,模型系统在正则描述下出现一级相变,而在微正则描述下不出现,表明正则和微正则系综对该系统相变级数的描述不等效.通过与其它模型比较可以预见,系综不等效可能是所有非扩展能量类系统共同的性质.这一结果为非扩展统计力学框架内的系综等效性研究提供新的证据. A new non-extensive energy model derived from describing rumor is provided and used to study the equivalence of ensembles. The thermodynamic quantities, the free energy and entropy, of the model system are calculated respectively in both canonical and micro-canonical ensembles by using the partition function and spin configuration number. The computational result shows that there is a first-order transition in the system described by the canonical ensemble, but no when described by the micro-canonical ensemble. It means that both ensembles' descriptions of the transition's order in the model system are not equivalent. Comparing it with that of other models we predicate that ensembles inequivalence may be a common character of all non-extensive energy systems. This result provides a new proof for the researches of ensembles equivalence in the frame of non-extensive statistical mechanics.
出处 《湖北大学学报(自然科学版)》 CAS 2004年第4期303-306,共4页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(19835040)(10075021)资助
关键词 正则 系综 配分函数 一级相变 热力学函数 自旋 统计物理学 ts模型 模型系统 扩展 Sociophysics phase transition ensembles equivalence canonical and micro-canonical PACS number
  • 相关文献

参考文献10

  • 1马本堃,高尚惠,孙熠.热力学与统计物理学[M].第2版.北京:高等教育出版社,1995.204~286.
  • 2Vega H J de, Sanchez N. Statistical mechanics of the self-gravitating gas:thermodynamic limit and phase diagrams[J]. Nucl Phys B, 2002, 625: 409~459.
  • 3Padmanabham T. Statistical mechanics of gravitating systems[J]. Physics Reports, 1990, 188(5):285~362.
  • 4Dauxois T, Ruffo S, Arimondo E, et al. Dynamiscs and thermodynamics of systems with long range interactions[J]. Lecture Notes in Physics, 2002, 602: 1~19.
  • 5Gross D H E. Microcanonical thermodynamics: phase transitions in "small" systems[M]. Singapore: World Scientific, 2001. 1~269.
  • 6Ellis R S, Haven K, Turkington B. Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows[J]. Nonlinearity, 2002, 15: 239~255.
  • 7Antoni M, Ruffo S, Torcini S. A first- and second-order clustering transitions for a systems with infinite-range attractive interaction[J]. Phys Rev E, 2002, 66: 025103-1~025103-4.
  • 8Liu Zhongzhu, Luo Jun, Shao Chenggang. Potts model for exaggeration of a simple rumor transmitted by recreant rumormongers[J]. Phys Rev E, 2001, 64:046134-1~046134-9.
  • 9Shao Chenggang, Liu Zhongzhu, Wang Junfeng, et al. Exact representation of crossover of transitions from first order to second order in the Potts model for rumor transmission[J]. Phys Rev E, 2003, 68, 016120-1~016120-14.
  • 10李家春, 周显初.数学物理中的渐进方法[M]. 北京:科学出版社, 1998. 36~46.

同被引文献95

引证文献2

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部