期刊文献+

基于减法聚类产生具有优化规则的模糊神经网络及其软测量建模 被引量:1

Generating Fuzzy-neural Networks with Optimal Fuzzy Rules Based on Subtractive Clustering with Applications to Soft Sensor Modeling
在线阅读 下载PDF
导出
摘要 提出了一种通过调整减法聚类半径优选模糊规则的软测量建模方法。首先用减法聚类建立T-S模糊模型,然后通过调整聚类半径优选模糊规则数,以取得具有良好泛化性能的模型,之后利用梯度下降混合最小二乘算法精调参数。最后用该方法对初馏塔石脑油干点进行软测量建模,结果表明能较快确定优化模型,并能满足软测量建模精度要求。 A soft sensor modeling method is presented which selects optimal fuzzy rules by tuning the radius of a subtractive cluster center. Subtractive clustering is used to generate a T-S fuzzy model. Secondly, the radius of a cluster center is adjusted to select optimal fuzzy rules, to acquire a fuzzy model with perfect generalization capability. The parameters is fine-tuned by means of a hybrid gradient descent (GD) and least-squares estimation (LSE). Finally, the method is used to model a PDU naphtha's dry point and the result shows that it can determine the optimal model fastly and achieve satisfactory prediction precision.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期694-697,共4页 Journal of East China University of Science and Technology
基金 国家863计划项目(2002AA412120)
关键词 减法聚类 T—S模糊模型 泛化能力 软测量 聚类半径 subtractive clustering T-S fuzzy model generalization capability soft sensor radius of a cluster center
  • 相关文献

参考文献3

  • 1Chiu S L. Fuzzy model identification based on duster estimation [J]. Journal of Intelligent and Fuzzy Systems, 1994,2(3) :267-278.
  • 2Wong Ching-chang, Chen Chia-chong. A hybrid clustering and gradient descent approach for fuzzy modeling[J]. IEEE Trans on Systems, Man and Cybernetics, 1999,29: 686-693.
  • 3Lee Shie-jue, Ouyang Chen-sen. A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD based learning[J]. IEEE Trans on Fuzzy System, 2003,11(3) :341-353.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部