期刊文献+

一种增量式模糊聚类算法 被引量:8

An Increasable Fuzzy Clustering Algorithm
在线阅读 下载PDF
导出
摘要 随着数据库中数据的迅速增长,新增数据对聚类结果有很大影响,而重新聚类势必严重浪费计算资源。本文提出了一种增量式的模糊聚类算法,合理地解决了新增数据对象的聚类及类属问题,并应用实例说明了新老算法具有同样的可靠性,但新算法大大提高了聚类分析与知识维护的效率。 With the data rapidly increasing, new data has an important effect on the intrinsic clustering results , while re- clustering certainly will waste much computation resources. This paper proposes a new increasable fuzzy clustering algorithm . which reasonably solves the clustering and the class attribute problem of the new data. The instance presented in the paper illustrates that both the new algorithms and the traditional one are reliable, but the former improves the efficiency of clustering analysis and knowledge maintenance every much.
出处 《微计算机应用》 2005年第1期5-7,共3页 Microcomputer Applications
关键词 模糊聚类算法 计算资源 数据对象 增量 新算法 数据库 维护 浪费 迅速增长 效率 Fuzzy Clustering, Increasable Data Mining, Knowledge Discovery
  • 相关文献

参考文献9

  • 1韩端 汪培庄.应用模糊数学[M].北京:首都经济贸易大学出版社,1989..
  • 2罗承忠.模糊集引论(上册)[M].北京:北京师范大学出版社,1985.135-143.
  • 3Zadeh L A Fuzzy sets. Inf Cont, 1965(8): 338-353.
  • 4Bezdek J C Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981.
  • 5Sandeep Kumar. Classification and Detection of Computer Intrusions[M]. COAST Laboratory Dept. of Computer Sciences Purdue University, 1995.8.
  • 6Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster. J Cybernet, 1974(3): 32-57.
  • 7Wu Z, Leathy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE PAMI, 1993, 15(11): 1101-1113.
  • 8Zadeh L A. Fuzzy sets. Inf Cont, 1965(8): 338-353.
  • 9Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981.

共引文献1

同被引文献72

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部