期刊文献+

一种基于三角模糊数多指标信息的聚类方法 被引量:4

A Clustering Method for Multiple Attribute Information with Triangular Fuzzy Numbers
原文传递
导出
摘要 针对一类特征指标值及指标权重均为三角模糊数的多指标信息聚类问题,提出了一种新的最大树聚类分析方法。首先对三角模糊数多指标信息聚类问题进行了描述;然后依据传统的基于数值信息的最大树模糊聚类分析方法的基本思路,给出了解决三角模糊数多指标信息聚类问题的计算步骤。最后,通过算例说明了本文给出的聚类方法。 With respect to multiple attribute clustering analysis problems with triangular fuzzy numbers, a new clustering analysis method is proposed. In this paper, firstly, the multiple attribute clustering analysis problem with triangular fuzzy numbers is introduced. Secondly, based on the traditional maximal tree clustering algorithm, calculation steps of the maximal tree clustering algorithm for multiple attribute information with triangular fuzzy numbers are presented. Finally, a numerical example is also used to illustrate the applicability of the clustering algorithm proposed in this paper.
出处 《系统工程理论方法应用》 2004年第5期467-470,共4页 Systems Engineering Theory·Methodology·Applications
基金 国家自然科学基金资助项目(70371050) 教育部高等学校优秀青年教师教学科研奖励计划资助项目(教人司[2002]123)
关键词 模糊聚类分析 模糊集 三角模糊数 最大树法 fuzzy clustering analysis fuzzy set triangular fuzzy numbers maximal tree clustering method
  • 相关文献

参考文献8

  • 1张原,李旭鸿.审计业务招投标优势的博弈探析[J].财政研究,2009,25(8):39-41. 被引量:3
  • 2Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996,84:49-60.
  • 3Zadeh L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971,3:177.
  • 4Tamra S. Pattern classication based on fuzzy relations[J]. IEEE Transactions on Systems, Man and Cybernetics, 1971,1(1):217.
  • 5Yang M S. On a class of fuzzy classification maximum likelihood procedures [J]. Fuzzy Sets and Systems,1993,57:365.
  • 6Pezdrey W. Condition fuzzy C-means[J]. Recognition Letters, 1996,17: 625.
  • 7Yager R R, Detyniecki M, Bouchon-Meunier B. A context-dependent method for ordering fuzzy numbers using probabilities [J]. Information Sciences,2001,138:237-255.
  • 8Vania P, Ivan P. Comparison of clusters from fuzzy numbers[J]. Fuzzy Sets and Systems, 1998,97:75-81.

二级参考文献1

共引文献2

同被引文献36

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部