期刊文献+

感兴趣区域高效提取算法(英文) 被引量:15

An Efficient Approach to Extraction of Region of Interest
在线阅读 下载PDF
导出
摘要 感兴趣区域在临床医学图像分析中占有重要地位.提出了一种基于单调推进曲线进化的感兴趣区域提取新方法.首先,通过极小化ROI(region of interest)能量函数,推导出区域速度函数项,并与基于边界的速度函数融合,提出融合ROI信息的单调推进Snake模型.ROI信息能够增强曲线深入到对比度低且细窄的区域中的传播能力.其次,提出了多初始化快速推进算法,选择性地种植种子曲线有助于局部区域的生长从而进一步改善分割结果.此外,为提高计算效率,在多尺度空间进行数值求解,其中利用快速解传递方法实现粗一级尺度到细一级尺度解的传递,可以加速收敛.利用医学图像分割实验对该方法进行评估,结果表明:该方法能够快速、精确地提取低对比度和细窄的ROI区域.与现有方法相比,该方法的高效性同时体现在分割结果和计算代价上. ROI (region of interest) plays an important role in medical image analysis. In this paper, an efficient approach to ROI extraction based on monotonically marching curve evolution is proposed. The improvement is in two aspects: first, a new monotonically marching snake integrating ROI information is presented by minimizing the new defined ROI energy. Due to the region based speed term, the front could even propagate in low contrast and narrow thin areas. Second, a multi-initial fast marching algorithm is developed for numerical implementation, where a multi-initial scheme can perform the selective growth of the front, thus further reduce the front leaking. Furthermore, a multiscale scheme for numerical implementation is adopted, where a fast passing solution method is used for determining the initial solution on the finer scale that greatly reduces the computational cost. The validity of the proposed approach is demonstrated on the medical image ROI extraction. Experimental results show that the approach is efficient both in computational cost and segmentation quality. Low contrast and narrow thin ROI could be efficiently extracted precisely by the approach.
出处 《软件学报》 EI CSCD 北大核心 2005年第1期77-88,共12页 Journal of Software
基金 国家自然科学基金 卫生部临床学科重点项目~~
关键词 感兴趣区域 曲线进化 多尺度策略 多初始化快速推进算法 分割 ROI(region of interest) curve evolution multiscale scheme multi-initial fast marching algorithm segmentation
  • 相关文献

参考文献17

  • 1Lorigo LM, Faugeras OD, GrimsonWEL, Keriven R, Kikinis R, Nabavi A, Westion CF. Curves: Curve evolution for vessel segmentation. Medical Image Analysis, 2001,5:185-206.
  • 2Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int'l Conf. on Computer Vision. 1987. 321-331.
  • 3Chakraborty A, Staib LH, Duncan JS. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans on Medical Imaging, 1996,15(6):859-870.
  • 4Ivins J, Porrill J. Constrained active region models for fast tracking in color image sequences. Image and Vision Computing, 1998,72(1):54-71.
  • 5Zhu S, Lee T, Yuille A. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Int'l Trans. on Pattern Analysis and Machine Intelligence, 1996,18(9):884-900.
  • 6McInerney T, Terzopoulos D. T-Snakes: Topology adaptive snakes. Medical Image Analysis, 2000,4:73-91.
  • 7Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Material Science. Cambridge University Press, 1999.
  • 8Malladi R, Sethian JA. An O (NlogN) algorithm for shape modeling. In: Proc of the National Academy of Sciences, 1996:9389-9392.
  • 9Adalsteinsson D, Sethian J. A fast level set method for propagating interfaces. Journal of Computational Physics, 1995,118:269-277.
  • 10Paragios N, Deriche R. Geodesic active regions for motion estimation and tracking. In: Proc of the 7th IEEE Int'l Conf on Computer Vision. Corfu, 1999. 688-674.

同被引文献118

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部