期刊文献+

支持向量机在线训练算法及其应用 被引量:17

On-line support vector machine training algorithm and its application
在线阅读 下载PDF
导出
摘要 针对支持向量机在线训练算法训练速度较慢和无法处理边缘支持向量集合为空的缺点,以KKT条件和拉格朗日乘数法为基础,用严格的数学推导得到一种改进的训练算法.通过建立一个矩阵缓存来保存与核函数相关的数据,给出在算法中有效操作该矩阵缓存的方法以加快训练速度;边缘支持向量集合为空时,修改模型的偏值项使样本进入该集合,训练算法得以继续运行;并讨论了该算法在在线系统辨识中的应用.仿真实验和分析结果表明:对于非线性时变系统,改进算法的建模精度较高,训练速度较原算法有了很大的提高. In order to increase training speed of original on-line support vector machine training algorithm, and to deal with the case of margin support vector set being empty, a new algorithm was obtained by strict mathematical deduction based on KKT condition and Lagrangian multiplier method. After a matrix cache was constructed to save data related with kernel function, the method to handle the cache effectively in the algorithm was presented to increase training speed. When the margin support vector set was empty, some sample was added into this set by updating the model bias, so that the training algorithm could run again. Also application of the algorithm to on-line system identification was discussed. The simulation and analysis results show that the modeling precision of the new algorithm is improved for nonlinear and time-varying system, and training speed is increased remarkably compared with that of the original algorithm.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第12期1642-1645,1649,共5页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2002CB312200).
关键词 支持向量机 在线训练 系统辨识 Karush-Kuhn-Tucker(KKT)条件 Cache memory Chemical reactors Computer simulation Lagrange multipliers Learning algorithms Mathematical techniques
  • 相关文献

参考文献7

  • 1VAPNIK V N. The nature of statistical learning theory[M]. Berlin: Springer, 1995.
  • 2CAUWENBERGHS G, POGGIO T. Incremental and decremental support vector machine[J]. Advances in Neural Information Processing Systems, 2001, 13: 409-415.
  • 3MARTIN M. On-line support vector machines for function approximation[R]. Barcelona: Software Department, Universitat Politecnica de Catalunya, 2002.
  • 4MA Jun-shui, THEILER J, PERKINS S. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15(11): 2683-2704.
  • 5LEHMAN B, BENTSMAN J, LUNEL S V, et al. Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior[J]. IEEE Transactions on Automatic Control, 1994, 39: 898-912.
  • 6CAO Y Y, FRANK P M. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(2): 200-211.
  • 7杜树新,吴铁军.回归型加权支持向量机方法及其应用[J].浙江大学学报(工学版),2004,38(3):302-306. 被引量:22

二级参考文献6

  • 1[2]LIN Chun-fu, WANG Sheng-de. Fuzzy support vector machines [J]. IEEE Trans on Neural Networks, 2002,13(2) :464-471.
  • 2[3]TOY F E H, CAO L J. Descending support vector machines for financial time series forecasting [J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 3[4]TOY F E H, CAO L J. Modified support vector machines in financial time series forecasting [J]. Neurocomputing, 2002, 48: 847- 861.
  • 4[5]VAPNIK V N. The nature of statistical learning [M].Berlin: Springer, 1995.
  • 5[6]FLAKE G W, LAWRENCE S. Efficient SVM regression training with SMO [J]. Machine Learning, 2002,41(1): 271-290.
  • 6[7]TAY F E H, CAO L. Application of support vector machines in financial time series forecasting [J]. Omega The International Journal of Management Science,2001, 29(4):309-317.

共引文献21

同被引文献192

引证文献17

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部