摘要
Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carrier in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.
Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carrier in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2004年第5期330-333,共4页
Transactions of Materials and Heat Treatment
关键词
等离子渗氮
ASPN
DCPN
SEM
active screen plasma nitriding (ASPN)
DC plasma nitriding (DCPN)
particles