期刊文献+

一种用于文本分类的语义SVM及其在线学习算法 被引量:2

The Semantic SVM Algorithm for Text Categorization and its On-line Learning Algorithm
在线阅读 下载PDF
导出
摘要 该文利用SVM在小训练样本集条件下仍有高泛化能力的特性,结合文本分类问题中同类别文本的特征在特征空间中具有聚类性分布的特点,提出一种使用语义中心集代替原训练样本集作为训练样本和支持向量的SVM:语义SVM。文中给出语义中心集的生成步骤,进而给出语义SVM的在线学习(在线分类知识积累)算法框架,以及基于SMO算法的在线学习算法的实现。实验结果说明语义SVM及其在线学习算法具有巨大的应用潜力:不仅在线学习速度和分类速度相对于标准SVM及其简单增量算法有数量级提高,而且分类准确率方面具有一定优势。 This paper suggests a very efficient Support Vector Machine algorithm for text categorization,Semantic Support Vector Machines or Semantic SVMs.Semantic SVMs exploit the character of SVMs that they have good generation ability even with small training set.Semantic SVMs are also based on the truth that feature distribution of certain categorization of texts is clustery in feature space.The original training text set is substituted by Semantic center set in Semantic SVMs as training samples and support vectors.This paper gives out the steps to generate a Semantic SVM from training texts and the framework of on-line learning algorithm of Semantic SVMs.The implementaion of on-line learning algorithm based on Sequential Minimal Optimization is also devised in this paper.Experiments on real-life corpus show that Semantic SVMs are promising:tens times faster than standard SVMs while slightly improve the classifying precision.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第36期11-14,57,共5页 Computer Engineering and Applications
基金 国家自然科学基金资助(编号:60272088)
关键词 文本分类 支持向量机 语义SVM 在线学习 text categorization,SVM,Semantic SVM,on-line learning
  • 相关文献

参考文献13

  • 1V N VapniK.The Nature of Statistical Learning Theory[M].New York:Springer, 1998
  • 2V N Vapnik.Statistical Learning Theory[M].New York:John Wiley and Sons Inc,1998
  • 3C Burges. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998;2(2):955~974
  • 4J Platt.Fast training of support vector machines using sequential minimal optimization[C].In:B ScholKopf,C Burges,A Smola eds. Advances in Kernel methods:support vector learning,MIT Press, 1998
  • 5J Platt.Sequential minimal optimization:a fast algorithm for training support vector machines[R].Technical Report,MSR-TR-98-14,Microsoft Research, 1998
  • 6S S Keerthi.lmprovements to Platt's SMO algorithm for SVM classifier design[J].Neural Computation,2001-03; 13:637~649
  • 7T Joachims.Text Categorization with Support Vector Machines:Learning with Many Relevant Features[C].In:Proceedings of ECML-98,10th European Conference on Machine Learning, 1997
  • 8Ji He,Ah-Hwee Tan,Chew-Lim Tan.A Comparative Study on Chinese Text Categorization Methods[C].In:the PRICAI'2000 International Workshop on Text and Web Mining,Melbourne,Australia,2000-08:24~35
  • 9Cauwenberghs G,Poggio T.Incremental and decremental support vector machine learning. Advances in Neural Information Processing 13(NIPS), Denver, CO, 2000
  • 10L Ralaivola,F d'Alché-Buc. Incremental Support Vector Machine Learning: a Local Approach[C].In :Proceedings of ICANN'01, Vienna,Austria, 2001

二级参考文献1

  • 1Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J] 1998,Data Mining and Knowledge Discovery(2):121~167

共引文献84

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部