期刊文献+

一种基于基本显露模式的分类算法 被引量:11

Classification by Essential Emerging Patterns
在线阅读 下载PDF
导出
摘要 本文提出了一种新的基于EP的分类法CEEP。CEEP仅使用最短的EP(eEP)建立分类器,并使用不同于早先的基于EP的分类法(如,CAEP)的评分标准。文中还讨论了eEP的有效挖掘,最小支持度和最小增长率阈值的自适应选取等问题。在UCI机器学习库中的12个数据集上的实验表明,本文的分类方法具有很好的分类正确率。如何保证eEP有足够的履盖率,以及如何处理稀有类的分类,尚待进一步研究。此外,如何将装袋(bagging)和推进(bootstrap)的思想与CEEP的方法相结合,进一步提高分类的正确率,也是值得深入研究的问题。 Emerging patterns (EPs)are itemsets whose supports change significantly from one data class to another. It has been shown that they are useful for constructing accurate classifiers. However,the existing EP-based classifiers may suffer from two major deficiencies: (1)they use a large number of EPs,which may lead to high processing over-head; and (2)their scoring method based on growth rate and support may reduce the contribution of EPs with high differentiating power and low support,which may lead to misclassification. This work proposes a novel classification method,CEEP (Classification by Essential Emerging Patterns),which uses a special kind of EPs,called essential Emerging Patterns (eEPs),and a growth-rate-based scoring method to construct classifiers. Mining eEPs is much easer than mining EPs,and using eEPs only is sufficient to construct accurate classifiers. Our experiment study carried on 12 benchmark datasets from the UCI Machine Learning Repository shows that CEEP performs comparably with other state-of-the-art classification methods such as NB,C5.0,CBA,CMAR,CAEP and BCEP in terms of overall predictive accuracy.
出处 《计算机科学》 CSCD 北大核心 2004年第11期211-214,共4页 Computer Science
基金 河南省自然科学基金(项目号:0211050100)
关键词 分类算法 机器学习 分类器 最小支持度 数据集 EP 自适应 正确率 处理 分类法 Data mining,Classification,Emerging pattern
  • 相关文献

参考文献10

  • 1Blake C, Merz C. UCI repository of machine learning databases.1998 [http://www. ics. uci. edu/- mlearn/ MLRepository.html]. Irvine,CA: University of California,Department of Information and Computer Science
  • 2Dong G,Li J. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc. of KDD′99, San Diego, USA,Sept. 1999.15-18
  • 3Dong G,Zhang X,Wong L,Li J. CAEP: Classification by Aggregating emerging patterns. In:Proc. of the 2nd Int′l Conf. On Discovery Science (DS′99) ,Tokyo,Japan,Dec. 1999.30-42
  • 4Fan H,Ramamohanarao K. Bayesian Approach to use Emerging Patterns for Classification. In:Proc of 14th Australasian Database Conf. Feb. 2003. 39-48
  • 5Han J,Pei J,Yin Y. Mining frequent patterns without candidate generation. In:Proc. of the 2000 ACM-SIGMOD Intl. Conf. on Management of Data, May 2000. 1-2
  • 6Li J,Dong G, Ramamohanarao K. JEP-Classifier: Classification by Aggregating Jumping Emerging Patters. Knowledge and Information Systems, 2001,3(2): 131-145
  • 7Li J,Dong G. Ramamohanarao K. Making Use of the Most Expressive Jumping Emerging Patterns for Classification. In:Pro. of 2000 Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD′00) ,2000. 220-223
  • 8Li W,Han J,Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules. In:ICDM′01,San Jose,CA,Nov. 2001. 369-376
  • 9Lin B, Hsu W, Ma Y. Integrating classification and association rule mining. In:KDD′98,New York,NY,Aug. 1998. 80-86
  • 10Zheng Z, Webb G I. Lazy learning of Bayesian rules. Machine Learing, 41:53-84

同被引文献83

引证文献11

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部