期刊文献+

基于最小二乘支持向量机的Linux主机入侵检测系统 被引量:4

Linux-hosted Intrusion Detection System Using Least Square Support Vector Machines
在线阅读 下载PDF
导出
摘要 论文探讨在新的网络软硬件环境、各种新的攻击工具与方法下,建立一个实际的网络入侵异常检测系统的可行性。为此,论文建立一个基于Linux主机的入侵检测实验环境,在同时提供多种正常服务的条件下实施攻击、提取特征并应用最小二乘支持向量机(LS-SVM)检测入侵。结果表明检测系统设计合理,特征提取及检测方法有效。 This paper aims at exploring the feasibility of establishing an anomaly detection system for network intrusion under the up-to-date hardware and software environment and all sorts of newly-invented attacking tools and methods.For this purpose,a Linux-hosted intrusion detection experimental system is set up,and attacks are laughed while the Linux server providing normal services,and then an LS-SVM classifier is used as a intrusion detector,which uses fea-tures real-timely abstracted.The experiment shows that the anomaly detection system is reasonably designed,the extracted features are effective,and the IDS system can detect accurately both known and unknown attacks.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第2期120-124,共5页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:69974014) 国家重点基础研究发展规划项目(编号:2002CB32200) 教育部科学技术研究重点项目(编号:00053)
关键词 支持向量机 入侵检测 特征抽取 异常检测 Support Vector Machines(SVM),Intrusion Detection System(IDS),feature extraction,anomaly detection
  • 相关文献

参考文献22

二级参考文献66

  • 1张千里.CCERT的建议和入侵检测系统的研究[M].北京:清华大学,2000..
  • 2张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995..
  • 3张莉 周伟达 焦李成.[D].西安:西安电子科技大学雷达信号处理重点实验室,2002.
  • 4..http://www. 11. mit. edu/IST/ideval/data/1999/.,.
  • 5[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 6[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 7[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 8[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 9[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.
  • 10[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145.

共引文献302

同被引文献14

  • 1张连华,张冠华,郁郎,张洁,白英彩.Intrusion detection using rough set classification[J].Journal of Zhejiang University Science,2004,5(9):1076-1086. 被引量:16
  • 2王旭仁,许榕生,张为群.基于Rough Set理论的网络入侵检测系统研究[J].计算机科学,2004,31(11):80-82. 被引量:6
  • 3杨辉华,王行愚,王勇,何倩.基于KPLS的网络入侵特征抽取及检测方法[J].控制与决策,2005,20(3):251-256. 被引量:14
  • 4唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 5Vapnik V. The nature of statistical learning theory[M]. New York: Springer, 1995.
  • 6Wang X D, Shi Z W, Wu C M, et al. An improved algorithm for deision-tree-based SVM[C]. Proc of the 6th World Congress on Intelligent Control and Automation. Dalian, 2006:4234-4237.
  • 7GUYON I, WESTON J, VAPNIK V N, et al.Geneselection for cancer classification using support vector machines [ J ]. Machine Learning, 2002, 46 ( 1 ):389--422.
  • 8Wang Yong,Yang Huihua,Wang Xingyu,et al.Distributed Intrusion Detection System Based on Data Fusion Method[C].Proc.of 5th World Congress on Intelligent Control and Automation.New Jersey,IEEE Press,2004.
  • 9Olivier Chapelle,Vladimir Vapnik,Olivier Bousquet,Sayan Mukherjee.Choosing Multiple Parameters for Support Vector Machines[J]. Machine Learning . 2002 (1-3)
  • 10Vapnik VN.The Nature of Statistical Learning Theory. Journal of Women s Health . 1995

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部