期刊文献+

带调和势的非线性Schrdinger方程爆破解的L^2集中性质 被引量:7

L^2-CONCENTRATION OF BLOW-UP SOLUTIONS FOR THE NONLINEAR SCHRDINGER EQUATION WITH HARMONIC POTENTIAL
在线阅读 下载PDF
导出
摘要 本文讨论了带调和势的具有临界幂的非线性schrdinger方程,得到其爆破解在t→T(爆破时间) 的几个重要性质;在L2空间中强极限的不存在性;爆破点以及L2集中性质. This paper investigates the blow-up solutions of the Cauchy problem for nonlinear Schrodinger equation with critical power and harmonic potential. The authors prove some properties of these solutions: nonexistence of strong limit in L2 as t→T (T is the blow-up time), the blow-up point and the existence of L2-concentration as t→T.
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第1期31-38,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.12071084)四川省重点实验室四川师范大学计算机软件实验基金资助的项目.
关键词 非线性Schr(oe)dinger方程 爆破 爆破点 L^2集中 BOSE-EINSTEIN凝聚 调和势 Nonlinear Schrdinger equation, Blow up, Blow-up point, L^2-concentration, Bose-Einstein condensates, Harmonic potential.
  • 相关文献

参考文献13

  • 1Carles, R., Remark on nonlinear Schroedinger equations with harmonic potential [J],Ann. Henri Poincard, 3(2002), 757- 772.
  • 2Tsurumi, T., & Wadati, M., Collapses of wave functions in multi-dimensional nonlinear Schroedinger equations under harmonic potential [J], J. Phys. Soc. Jpn., 66(1997), 1 8.
  • 3Weinstein, M. I., Nonlinear Schroedinger equations and sharp interpolation estimates[J], Comm. Math. Phys [J], 87(1983), 567- 576.
  • 4Kwong, M. K., Uniqueness of positive solutions of △u - u + u^p = 0 in RN [J], Arch.Rational. Mech. Anal., 105(1989), 243-266.
  • 5Merle, F. & Tsutsumi, Y., L^2-concentration of blow-up solutions for the nonlinear Schroedinger equation with critical power nonlinearity [J], J. Diff. Eqs., 84(1990), 205-214.
  • 6Oh, Y. G., Cauchy problem and Ehrenfest's law of nonlinear Schroedinger equations with potentials [J], J. Diff. Eqs., 81(1989), 255- 274.
  • 7Cazenave, T., An Introduction to Nonlinear Schroedinger Equations [M], Textos de metodos mathmatics, 22 Rio de Janeiro, 1989.
  • 8Zhang, J., Stability of attractive Bose-Einstein condensate [J], J. Statist. Phys 101(2000), 731 -746.
  • 9Strauss, W. A., Existence of solitary waves in higher dimensions [J], Comm. Math.Phys., 55(1977), 149-162.
  • 10Kavian, T., A remark on the blowing-up of solutions to the Cauchy problem for nonlinear SchrSdinger equations [J], Trans. Am. Math. Soc., 299(1987), 193-203.

同被引文献84

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部