期刊文献+

Sigma点卡尔曼滤波及其应用 被引量:17

Sigma-point Kalman filter and its application
在线阅读 下载PDF
导出
摘要 针对扩展卡尔曼滤波(EKF)不易调整、难于应用、只对更新时间步长内局部线性假设成立的非线性系统适用等不足,近年来提出了一些卡尔曼滤波向非线性系统扩展的新方法。根据均值与协方差信息按非线性映射传播的特点,将它们归类为Sigma点卡尔曼滤波(SPKF)方法。在简要说明加权统计线性回归技术的基础上,系统介绍了SPKF的形式及算法,对其应用情况进行了总结和展望,指出可采用SPKF替代EKF以获得更好的性能。 An extended Kalman filter (EKF) is difficult to implement and tune, and only reliable for the systems that are nearly linear on the time scale of the updates, to overcome these shortages some new extension methods of Kalman filter to nonlinear systems have been proposed recently. These methods are classified as a family of filters called Sigma-point Kalman filters (SPKF). Based on brief explanation of weighted statistical linear regression technology, the form and arithmetic of SPKF are introduced, and the applications of SPKF are summarized and forecasted.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第1期141-144,共4页 Systems Engineering and Electronics
关键词 卡尔曼滤波 统计线性化 Sigma点 估计 Kalman filtering statistical linearization Sigma points estimation
  • 相关文献

参考文献26

  • 1Greg W, Bishop G. An introduction to the Kalman filter[R]. Technical Report TR 95 - 041, Department of Computer Science, University of North Carolina at Chapel Hill, Updated, 2003. 1 - 16.
  • 2Kushner H J. Dynamical equations for optimum nonlinear filtering[J].Journal of Differential Equations, 1967 (3): 179 - 190.
  • 3Kushner H J. Approximations to optimal nonlinear filters [J]. IEEE Trans. on Automatic Control, 1967, 12(5): 546- 556.
  • 4Alspach D L, Sorenson H W. Nonlinear Bayesian estimation using Gaussian sum approximation[J]. IEEE Trans. on Automatic Control,1972, 17(4): 439 - 448.
  • 5Cordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings-F, 1993,140(2): 107 - 113.
  • 6Drécourt J P. Kalman filtering in hydrological modelling[R]. DAIHM Technical Report 2003- 1, DHI Water & Environment, Agern All 11,2970 Horsholm, Denmark, 2003. 35- 46.
  • 7Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems [A]. Proceedings of the 1995 American Control Conference[C]. 1995.1628 - 1632.
  • 8Uhlmann J K. Dynamic map building and localization for autonomous vehicles[D]. University of Oxford, 1995. 78 - 110.
  • 9Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems [ A]. The Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls[C]. SPIE, Orlando FL, USA, 1997. 182-193.
  • 10Kazufumi Ito, Kaiqi Xiong. Gaussian filters for nonlinear filtering problems [J]. IEEE Trans. on Automatic Control,2000, 45(5): 910-927.

同被引文献114

引证文献17

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部