摘要
在阐述用最优化方法计算离散波数的基础上,对波数初值的给定及偏导数矩阵的计算方法作了进一步的改进,使其在数学推理上更加严密;在计算量和计算精度方面也有了很大的改善,并简化了程序设计。通过试算发现,反付氏变换的均方误差随波数个数的变化规律,即在变化曲线上存在转折点,在转折点之后误差趋于平稳变化。选取转折点处的波数个数作为反付氏变换的波数个数,这样在正演、反演过程中,既保证了计算精度,又节约了计算时间。
Based upon the foundation of calculating discrete wave-number with optimum method, the paper presents an improved method for the initial value of wave-number and the calculation of prejudiced matrix, which make the mathematical deduction more reasonable than before with higher calculating speed and precision as well as simpler programming. The results of calculation show the regularity of square errors of Fourier inverse transform with wave-number, that is, namely there is a turning point in the changed curve, and it will keep stable when the wave-number increases further. The number of wave-number in the turning point is chosen as that of Fourier inverse transform and the features ensure the precision of calculation and reduce the time of computation during forward and inversion.
出处
《物探化探计算技术》
CAS
CSCD
2005年第1期34-38,共5页
Computing Techniques For Geophysical and Geochemical Exploration
基金
"十五"国家科技攻关项目资助(2001BA609A-06)
关键词
离散
偏导数
变换
个数
矩阵
初值
均方误差
波数
正演
反演
discrete wave-number
partial derivatives matrix
square errors
forward
inversion