期刊文献+

Predicting Model for Complex Production Process Based on Dynamic Neural Network 被引量:1

Predicting Model for Complex Production Process Based on Dynamic Neural Network
在线阅读 下载PDF
导出
摘要 Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process. Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process.
出处 《Journal of China University of Mining and Technology》 2001年第1期20-23,共4页 中国矿业大学学报(英文版)
关键词 dynamic neural network Elman network complex production process predicting model 动态神经元模型 人工神经网络 预测模型 生产过程 选煤
  • 相关文献

参考文献6

二级参考文献16

  • 1洪沁,何振亚.手写体数字的神经网络识别方法[J].模式识别与人工智能,1994,7(1):66-71. 被引量:9
  • 2巩敦卫 张嗣瀛.选煤厂CIMS质量保证体系的研究.第九届控制与决策学术年会论文集[M].沈阳:东北大学出版社,1997.96-101.
  • 3蒲小平,北京科技大学学报,1993年,15卷,6期,610页
  • 4张立明,人工神经网络的模型及其应用,1990年,25页
  • 5汪东海,1995年
  • 6Bao D H,IEEE Conf on Neural Networks,1993年,743页
  • 7杨璐,决策与决策支持系统,1996年,6卷,2期,69页
  • 8巩敦卫,’97中国控制与决策学术会议论文集,1997年,96页
  • 9李芳芸,CIMS环境下集成化管理信息系统的分析、设计与实施,1996年,1页
  • 10张公绪,质量管理,1993年,43页

共引文献27

同被引文献12

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:57
  • 2MICHIE D,CHAMBERS R A.Boxes:an experiment in adaptive control[J].Machine Intelligence,1968,2(2):137-152.
  • 3BARAS J S,BORKAR V S.A learning algorithm for Markov decision processes with adaptive state aggregation[C]// Proceedings of the IEEE Conference on Decision and Control.New Jersey:Piscataway Press,2000:3351-3356.
  • 4MOORE A W,ATKESON C G.The parti-game algorithm for variable resolution reinforcement learning in multidimensional state spaces[J].Machine Learning,1995,21(3):199-233.
  • 5LIN C K.A reinforcement learning adaptive fuzzy controller for robots[J].Fuzzy Sets and Systems,2003,137(3):339-352.
  • 6KUROZUMI R,FUJISAWA S,YAMAMOTO T,et al.Development of an automatic travel system for electric wheelchairs using reinforcement learning systems and CMACs[C]// Proceedings of the International Joint Conference on Neural Networks.Honolulu:Institute of Electrical and Electronics Engineers Inc.Press,2002:1690-1695.
  • 7SUTTON R S,BARTO A G.Reinforcement learning:an Introduction[M].Cambridge:The MIT Press,1998.
  • 8WATKINS C J C H,DAYAN P.Technical report:Q-learning[J].Machine Learning,1992,8(3):279-292.
  • 9SUTTON R S.Learning to predict by the methods of temporal differences[J].Machine Learning,1988,3(1):9-44.
  • 10JUANG C F.Combination of online clustering and Q-value based GA for reinforcement fuzzy system design[J].IEEE Transactions on Fuzzy Systems,2005,13(3):289-30.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部