期刊文献+

红外图像目标瞄准点测量和基于自适应Kalman滤波的瞄准点跟踪 被引量:5

The measurement and tracking system with an adaptive kalman filter for the aimpoint of the target in a FLIR image
在线阅读 下载PDF
导出
摘要 前视红外图像(FLIR)包含有关目标形状的丰富信息,可据以识别目标的背景干扰,从而增强抗干扰能力,且可根据目标要害部的亮度特点及预定范围,确定并进而跟踪瞄准点,本文提出目标瞄准点的序贯相关测量与Kalman滤波相结合的跟踪方法,在用110帧红外序列图像目标瞄准点跟踪仿真研究中,获得令人满意的结果,本文给出仿真误差方差、误差曲线和代表性的跟踪照片。 There is a great deal of information about the target shape in the FLIR image to identify the type of target and to recognize targets from the background and clutters. Therefor, the performances of anticlutter of the homing guidance system are enhanced. Based on the signal characteristic of the vital ports of a target and the predetermined area, the position of the target's aimoint can be obtained, measured, and tracked. The methods which are employed to accurately determine, measure, and track the aimpoint of the targets in a sequence of FLIR image are studied. The sowlces which causes the evom of the aimhoint tiacking are analysed in this paper. A new aimpoint tracking scheme comlined by the sequential correlation measurement with the adantine kalman tietel is monosed. By using IIO IR sequential images (i.e. tracking time is about 4 sec.), we make a simulation reserch for the tracking of the ship's aimpoint. It is satisfactory that the tracking errors are x = 0.08 and y = 0.08. Forthmore, the maximal error is less then +1 pixel.
出处 《电子测量与仪器学报》 CSCD 1994年第1期43-51,共9页 Journal of Electronic Measurement and Instrumentation
关键词 图像目标跟踪 自适应 卡尔曼滤波 image aimpoint tracking, adaptive kalman filter
  • 相关文献

同被引文献30

  • 1凌建国,刘尔琦,杨杰,杨磊.基于H_∞滤波器的红外小目标运动预测和跟踪方法[J].红外与毫米波学报,2005,24(5):366-369. 被引量:11
  • 2林洪华.动态测试数据处理[M].北京:北京理工大学出版社,1995..
  • 3AIDALA V J, HAMMEL S E. Utilization of modified polar coordinates for bearing-only tracking[J]. IEEE Transaction on AC, 1983,28(4) : 283-290.
  • 4FOGEL E,GAVISH M. Nth-order dynamics target observability from angle measurements [J]. IEEE Trans on Aerospace & Electronic Systems, 1988,12(3): 305- 307.
  • 5SPRINGARN K. Passive position location estimation using the extended Kalman filter systems[J]. IEEE Trans. Aerospace and Electronic Systems, AES-23, 1987 : 558-567.
  • 6PHAM D T. Some quick and efficient methods for bearing-only target motion analysis[J]. IEEE Transactions on Signal Processing,1993,41(9):2727-2751.
  • 7GORDON N, SALMOND D. Novel approach to non-linear and non-gaussian bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993, 140 (2):107-113.
  • 8LIANG J, PENG X Y, MA Y T. Particle estimation algorithm using correlation of observation for nonlinear system state[J]. Electronics Letters, 2008. 44(8):553- 554.
  • 9ARULAMPALAM M S, MASKELL S,GORDON N, et al. A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking[J]. Signal Processing, IEEE Transactions, 2002,50 (2) : 174-188.
  • 10PITT M, SHEPHARD N. Filtering via simulation: Auxiliary particle filter[J]. Amer. Statist. Assoc, 1999, 94(446) :590-599.

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部