期刊文献+

经验模式分解模糊特征提取的支持向量机混合诊断模型 被引量:7

Hybrid Diagnosis Model of Support Vector Machine Based on Fuzzy Feature Extraction with Empirical Mode Decomposition
在线阅读 下载PDF
导出
摘要 为解决机械故障小样本模式识别问题,有效地提高分类的准确率,提出了一种基于经验模式分解模糊特征提取的支持向量机混合诊断模型.该模型通过对信号进行经验模式分解,提取信号的本征模式分量并转化为模糊特征向量,对机器故障进行诊断,然后将模糊特征向量输入到多分类的支持向量机中,实现了对机器不同故障类型的识别.将该模型应用于汽轮发电机组的 3 种工作状态的识别中,测试结果表明,同原有的未经过任何特征提取以及经过小波包模糊特征提取的 2 种多分类支持向量机方法相比,该模型将分类准确率从原有的53 33%和86 67%提高到100%,有效地改善了分类的准确性.同时,该模型还为汽轮发电机组的故障确诊提供了有力依据. To solve the small-sample pattern recognition problem of mechanical equipment fault and improve classification ability, a new hybrid diagnosis model of support vector machine (SVM) based on fuzzy feature extraction with empirical mode decomposition (EMD) is proposed, where these intrinsic mode components are extracted with EMD from original signals and converted into fuzzy feature vectors, and then the mechanical fault can be diagnosed. The extracted fuzzy feature vectors are input into the multi-classification SVM to detect the different abnormal cases. This model is applied to the classification of turbo-generator set under 3 operating conditions. Testing results show that the classification accuracy of the proposed model (100% classification success rate) is greatly improved compared with the SVM without feature extraction (53.33% classification success rate) and with the SVM extracting the fuzzy feature from wavelet packets (86.67% classification success rate), and the faults of turbo-generator set can be correctly and rapidly diagnosed.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第3期290-294,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(50335030) 国家自然科学基金资助项目(50175087 50305012) 西安交通大学科学研究基金资助项目(JXX2003010).
关键词 经验模式分解 支持向量机 模糊特征提取 混合诊断 Classification (of information) Feature extraction Fuzzy sets Learning systems Pattern recognition Signal processing Steam turbines Time domain analysis Vibrations (mechanical)
  • 相关文献

参考文献7

  • 1Rychetsky M, Ortmann S, Glesner M. Support vector approaches for engine knock detection [A]. International Joint Conference on Neural Networks [C].Washington DC: IEEE Inc, 1999. 969-974.
  • 2何正嘉,张函垺,马计丰,屈梁生.机械动态信号与模糊隶属函数[J].信号处理,1991,7(1):21-30. 被引量:2
  • 3Huang N E, Shen Z, Long S R, et ak The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 1998,454(1) : 903-995.
  • 4Huang N E,Shen Z,Long S R. A new view of nonlinear water waves:the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999(31) : 417-457.
  • 5Huang N E. A new spectral representation of earthquake data: Hilbert spectral analysis of station TCU129, Chi-Chi, Taiwan, 21 September 1999 [J].Bulletin of the Seismological Society of Ametica, 2001,91(5):1 310-1 338.
  • 6Vapnik V N. The nature of statistical learning theory[M]. New York:Springer-Verlag, 1995. 138-146.
  • 7Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines [J]. IEEE Transactions on Neural Networks, 2002,13(2): 415-425.

共引文献1

同被引文献96

引证文献7

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部