期刊文献+

Bi-Mn合金在强磁场中凝固时MnBi相织构组织的演化

Microstructure evolution of magnetic aligned MnBi phase in Bi-Mn alloys solidified in high static magnetic field
在线阅读 下载PDF
导出
摘要 在3种不同凝固条件下,制备了Bi-Mn合金,研究了合金中MnBi相织构组织随磁感应强度和凝固时间的演化.结果表明,合金从265~355℃的固液两相区凝固时,随1.0T磁场中凝固时间的延长,取向棒状MnBi晶粒沿磁场方向聚合长大,长径比增大约50%;合金从355~446℃的固液两相区凝固时,随外磁场强度的增大(最大达10.0 T)和凝固时间的增加,取向片状MnBi晶粒沿磁场方向聚合长大,形成疏松不规则的粗大棒状晶粒;合金从完全熔化状态凝固时,以0.15℃/s的速度冷却可以获得MnBi相织构组织,以0.015℃/s或更小的速度冷却则不能;延长磁场中Bi-Mn合金的凝固时间不能有效提高材料的剩磁性能. Bi-Mn alloys were prepared under three different solidification conditions respectively. The microstructure evolutions of magnetic aligned MnBi grains were investigated experimentally in dependence on magnetic flux density and solidified time. The results show that, solidifying from mushy zone between 265℃ and 355℃ in an 1.0T magnetic field, the aligned rod-like MnBi grains congregate and grow up along the direction of magnetic field with the increase of solidified time so that the mean ratio of long axis to diameter of the grains increases about 50%; solidifying from mushy zone between 355℃ and 446℃, the aligned oblate-shaped MnBi grains also congregate and grow up along the direction of magnetic field with the increase of magnetic flux density (up to 10.0T) and solidified time, while several huge rod-like MnBi grains appear, which are irregular and loose; solidifying from molten state, the textured structure of MnBi phase can form at a cooling rate of 0.15℃/s, but can not at 0.015℃/s or slower. The remanence of Bi-Mn alloys can hardly be enhanced by prolongating solidified time in a magnetic field.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第2期229-235,共7页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(50307014 50472063) 中国博士后科学基金资助项目(2004035412)
关键词 金属凝固 磁取向 强磁场 BI-MN合金 MnBi相 metal solidification magnetic alignment high static magnetic field Bi-Mn alloy MnBi phase
  • 相关文献

参考文献19

  • 1王晖,任忠鸣,李伟轩,徐匡迪,黄晖,王秋良,严陆光.磁场凝固法制备过共晶MnBi/Bi磁性功能复合材料[J].功能材料,2004,35(5):550-552. 被引量:7
  • 2Herlach F. Strong and Ultrastrong Magnetic Fields and Their Applications [M]. Berlin: Spring-Verlag,1985. 146.
  • 3Rango P D, Lee M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field[J]. Nature, 1991, 349 (6312):770-772.
  • 4Uyeda C, Tanaka K, Takashima R, et al. Magnetic alignment at reduced field intensity due to decrease of temperature observed for nonferromagnetic particles possessing paramagnetic and diamagnetic anisotropy[J]. JapJ ApplPhys, 2004, 43: 980-984.
  • 5Sato T, Yamada Y, Saijo S, et al. Improvement in diffraction maxima in orthorhombic HEWL crystal grown under high magnetic field[J]. J Cryst Growth,2001, 232: 229-236.
  • 6Katsuki A, Tokunaga R, Watanabe S I. The effect of high magnetic field on the crystal growth of benzophenone[J]. Chem Lett, 1996(8): 607-608.
  • 7Lees M R, Bourgault D, Rango P D, et al. A study of the use of a magnetic field to control the microstructure of the high-temperature superconducting oxide YBa2 Cu3 O7-δ [J]. Philosophical Magazine B, 1992, 65(6): 1395-1404.
  • 8Asai S. Application of high magnetic fields in inorganic material processing[J]. Modelling Simul Mater Sci Eng, 2004, 12: R1-R12.
  • 9Gillon P. Uses of intense D. C. magnetic fields in materials processing[J]. Materials Science and Engineering A, 2000, 287: 146-152.
  • 10Yasuda H, Ohnaka I, Yamamoto Y, et al. Alignment of BiMn crystal orientation in Bi-20 % Mn alloys by laser melting under a magnetic field[J]. Mater Trans, 2003, 44(12): 2550-2554.

二级参考文献35

  • 1Farrel D E, Chandrasekhar B S, DeGuire M R, Fang M M, Kogan V G, Clem J R, Finnemore D K. Phys Rev B,1987; 36(7): 4025
  • 2Cloots R, Vandewalle N, Ausloos M. Appl Phys Lett, 1994;65:3386
  • 3Ma Y, Wang Z. Physica C, 1997; 282-287:2619
  • 4Ferreira P J, Liu H B, Vander Sande J B. J Mater Res,1999; 14(7): 2751
  • 5Morikawa H, Sassa K, Asai S. Mater Trans JIM, 1998;39(8): 814
  • 6Yasuda H, Ohnaka I, Shimamura K. In: Asai S ed, The 3rd Int Symp on EPM. Nagoya, Japan, ISIJ, 2000:647
  • 7Probstein R F. Physicochemical Hydrodynamics: An Introduction, Butterworths, Boston, 1989:85
  • 8Barrett S E, Durand D J, Pennington C H. Phys Rev B,1990; 41:6283
  • 9Vaknin D, Sinha S K, Stassis C, Miller L L, Johnson D C.Phys Rev B, 1990; 41:1926
  • 10Shetty M N, Rawat D K, Rai K N. J Mater Sci, 1987; 22:1908

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部