期刊文献+

利用TM数据提取干旱区土地覆被信息的方法比较 被引量:15

Study on the Methods of Deriving the Information of Land Cover in the Arid Areas by Using TM Data
在线阅读 下载PDF
导出
摘要 以柴达木盆地香日德绿洲作为研究实验区,对该区域ETM遥感数据经过空间分辨率融合、主成分分析等方法进行空间信息增强及专题信息增强处理,组合最佳视觉背景图像,分别在不同背景图像上选择训练样本,利用最大似然法监督分类方法(MLC)、多空间尺度分层聚类(SSHC)和基于知识的模糊聚类方法(KFC)等分类器,分别用各自训练样本初始化各类别信息特征值,形成类别特征值模式库,分别以此为基础对待分样本进行分类,对初分类的结果经过类别合并、碎斑滤除以及重新编码赋色等分类后处理,得到最终分类结果及分类精度评价结果。从所获数据可以得出如下结论:从总体精度和Kappa值可知,SSHC和KFC分类方法所获结果精度较高,总体精度比MLC分类结果约高于3%,SSHC之结果精度略高于KFC之结果;SSHC、KFC和MLC三种分类方法对该区域地表覆被信息的提取分类中,SSHC分类方法对耕地、石砾地、河滩和荒漠分类结果较好,KFC分类方法对耕地、沙地、河滩和荒漠分类结果较好,MLC分类方法对耕地、河滩和荒漠分类结果较好,三种分类方法对耕地、河滩和荒漠等三种地类的分类精度较高,用户精度都在80%以上,而对沙地和石砾地的分类结果其用户精度大都低于80%。 By taking the Xiangride Oasis as the study area, in this paper, the spatial information and the thematicinformation of land use and land cover in the study area are enhanced by using the ETM remote sensing data afterinosculating the spatial resolving power and analyzing the principal components. The optimal color images arecomposed by using some processed band data, the training samples are selected from the background images. Byusing the maximum likelihood supervision classification (MLC), multi-spatial-scale hierarchical clusteringalgorithm (SSHC) and geographic-knowledge-based fuzzy clustering (KFC), the training samples areseparately initialized to obtain the eigenvalues of all kinds information so as to develop the eigenvalue modedatabase. All pixels were classified by using the mode base to get the initial classified results, the finally classifiedresults and classification precision are derived by post-processing including the clumping, riddling, eliminationand recoding for the initial classified results. The conclusions are as follows: the classified accuracy of SSHC andKFC is 3% higher than that of MLC, and the classified accuracy of SSHC is slightly higher than that of KFC. Inthree methods for deriving the information of land use and land cover, SSHC is more ideal to class farmlands,gravel lands, flood lands and deserts, KFC is more ideal to class farmlands, sand lands, flood lands and deserts,and MLC is more ideal to class farmlands, flood lands and deserts. The accuracy of all three methods forclassifying farmlands, flood lands and deserts is higher than 80%, but it is lower than 80% in classifying sandlands and gravel lands.
出处 《干旱区地理》 CSCD 北大核心 2005年第1期59-64,共6页 Arid Land Geography
基金 中国科学院知识创新重要方向项目(KZCX2-SW-118) 国家重点科技攻关项目(97-924-02-02A)
关键词 背景图像 训练样本 分类器 分类精度 TM数据 模式库 基于知识 耕地 区域 信息 TM data land use/cover LUCC remote sensing classifying method arid area.
  • 相关文献

参考文献21

二级参考文献83

共引文献1126

同被引文献263

引证文献15

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部