期刊文献+

多种策略改进朴素贝叶斯分类器 被引量:11

Improving Naive Bayes Classification Model in Various Methods
在线阅读 下载PDF
导出
摘要 朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,影响了它的分类性能。通过广泛深入的研究,对改进朴素贝叶斯分类器的多种策略进行了系统的分析和归类整理,为进一步的研究打下坚实的基础。 Naive Bayes classifier is a simple and effective classification method, but its attribute independence assumption makes it unable to express the dependence among attributes in the real world, and affects its classification performance. On the basis of extensive and deep research, various improving methods based on Naive Bayes classifier are analyzed and sorted out systematically, which provides the foundation for further research.
作者 张璠
出处 《微机发展》 2005年第4期35-36,39,共3页 Microcomputer Development
关键词 朴素贝叶斯 贝叶斯网络分类器 树扩张型贝叶斯 Naive Bayes Bayesian network classifiers tree-augmented Naive Bayes
  • 相关文献

参考文献12

  • 1石洪波,王志海,黄厚宽,励晓健.一种限定性的双层贝叶斯分类模型[J].软件学报,2004,15(2):193-199. 被引量:44
  • 2Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations[M].Seattle: Morgan Kaufmann Publishers,2000. 265 - 314.
  • 3Kononenko I. Semi - Naive Bayesian Classifiers[A]. In:Proceedings of European Conference on Artificial Intelligence[C].Porto, Portugal: Springer-Verlag, 1991. 206-219.
  • 4Langley P,Sage S. Induction of Selective Bayesian Classifiers[A]. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence[C]. Seattle, WA: Morgan Kaufmann Publishers, 1994. 339 - 406.
  • 5Kohavi R. Scaling up the Accuracy of Naive - Bayes Classifiers: A Decision- Tree Hybird[A]. In: Simoudis E, Han J W, Fayyad U M. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining [ C ].Menlo Park, CA: AAAI Press, 1996. 202 - 207.
  • 6Zheng Z, Webb G I. Lazy Learning of Bayesian Rules[J].Machine Learning, 2000, 41: 53- 84.
  • 7Wang Z H,Webb G I. A Heuristic Lazy Bayesian Rule Algorithm[A]. In:Simoff S J ,Williams G J ,Hegland M. Proceedings of Australian Data Mining Workshop[C]. Sydney, Australia: Sydney University of Technology Press, 2002. 57 -63.
  • 8Pazzani M J. Constructive Induction of Cartesian Product Attributes[A]. In: Proceedings of the Conference on Information, Statistics and Induction in Science [C]. Singapore:World Scientific, 1996.66 - 77.
  • 9Wang Z H,Webb G I,Zheng F. Adjusting Dependence Relations for Semi - Lazy TAN Classifiers[A]. In: Advances in Artificial Intelligence, LNAI 2903 [ C]. Berlin Heidelberg:Springer - Verlag, 2003. 453 - 456.
  • 10Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers[ J ]. Machine Learning, 1997, 29 (2 - 3 ): 131 -163.

二级参考文献15

  • 1Friedman N,Geiger D,Goldszmidt M.Bayesian network classifiers.Machine Learning,1997,29(2-3):131-163.
  • 2Langley P,Iba W,Thompson K.An analysis of Bayesian classifiers.In:Rosenbloom P,Szolovits P,eds.Proc.of the 10th National Conf.on Artificial Intelligence.Menlo Park:AAAI Press,1992.223-228.
  • 3Kononenko I.Seminaive Bayesian classifier.In:Kodratoff Y,ed.Proc.of the 6th European Working Session on Learning.New York:Springer-Verlag,1991.206-219.
  • 4Pazzani MJ.Searching for dependencies in Bayesian classifiers.In:Fisher D,Lenz HJ,eds.Learning from Data:Artificial Intelligence and Statistics V.New York:Springer-Verlag.1996.239-248.
  • 5Langley P,Sage S.Induction of selective Bayesian classifiers.In:Mantaras RL,Poole DL,eds.Proc.of the 10th Conf.on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1994.399-406.
  • 6Webb GI,Pazzani MJ.Adjusted probability naive Bayesian induction.In:Antoniou G,Slaney JK,eds.Proc.of the 11th Australian Joint Conf.on Artificial Intelligence.Berlin:Springer-Verlag,1998.285-295.
  • 7Kohavi R.Scaling up the accuracy of Naive-Bayes classifiers:A decision-tree hybrid.In:Simoudis E,Han J,Fayyad UM,eds.Proc.of the 2nd Int'l Conf.on Knowledge Discovery and Data Mining.Menlo Park:AAAI Press,1996.202~207.
  • 8Keogh EJ,Pazzani MJ.Learning augmented Bayesian classifiers:A comparison of distribution-based and classification-based approaches.In:Heckerman DE,Whittaker J,eds.Proc.of the Uncertainty'99:The 7th Int'l Workshop on Artificial Intelligence and Statistics.
  • 9Cheng J,Greiner R.Comparing Bayesian network classifiers.In:Laskey KB,Prade H,eds.Proc.of the 15th Conf.on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1999.101-108.
  • 10Chickering DM,Geiger D,Heckerman D.Learning Bayesian networks is NP-complete.In:Fisher DH,Lenz HJ,eds.Learning from Data:Artificial Intelligence and Statistics V.New York:Springer-Verlag,1996.121-130.

共引文献43

同被引文献74

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部