摘要
为了求三次埃尔米特插值函数,采用重节点差商的方法,得到了类似于牛顿插值的结果.与Lagrange插值基函数法相比,本方法十分简便.就一般情况给出了三次埃尔米特插值函数的误差公式,并介绍了误差公式的证明方法.
To solve cubic-Hermite interpolation functions, the method of divided difference at same node was used, and the result similar to Newton's interpolation function was obtained. The proposed method is much simpler compared with Lagrange interpolation with base function. An error formula for cubic-Hermite's interpolation function was derived and proven for general cases.
出处
《西南交通大学学报》
EI
CSCD
北大核心
2005年第2期273-276,共4页
Journal of Southwest Jiaotong University
关键词
埃尔米特插值
牛顿插值
分段插值
误差估计
重节点差商法
Hermite interpolation
Newton interpolation
subsection interpolation
error estimation
divided difference at same node