期刊文献+

半E-凸函数的一些新性质 被引量:4

New Properties of Semi EConvex Functions
在线阅读 下载PDF
导出
摘要 得出了半E 凸函数的一些新性质, 并对它的某些最优化理论中的结果进行了推广. New properties of semi Econvex function are presented in this paper, and some results of optimization theories are also generalized in it.
作者 颜丽佳
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期215-217,共3页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 E-凸集 半E-凸函数 拟半E-凸函数 伪半E-凸函数 Econvex semi Econvex function quasi-semi Econvex function pseudo-semi Econvex function
  • 相关文献

参考文献5

  • 1Chen Xiusu. Some Properities of Semi-E-Convex Functions [J]. J Math Anal Appl, 2002, 275:251 -262.
  • 2Younese E A. E - Convex, E - Convex Functions, and E - Convex Programming [J]. J Optiom Theory Appl, 1999,102:439 - 450.
  • 3Hanson M A. On Sufficiency of the Kuhn-Tucker Conditions [J]. J Math Anal Appl, 1981, 80:545-550.
  • 4Weir T, Mond B. Pre-Invex Functions in Multiple Objective Optimization [J]. J Math Anal Appl, 1988, 136:29-38.
  • 5Weir T, Jeyakumar V. A Class of Nonconvex Functions and Mathematical Programming[J]. Bull Austral Math Soc,1988, 38: 177- 189.

同被引文献27

  • 1张文俊,刘太顺.On Decomposition Theorem of normalized biholomorphic convex mappings in Reinhardt domains[J].Science China Mathematics,2003,46(1):94-106. 被引量:30
  • 2刘小松,尹建华.一类α次星形映照的偏差定理(英文)[J].徐州师范大学学报(自然科学版),2005,23(1):11-15. 被引量:7
  • 3Youness E A. E-Convex Sets, E Convex Functions and E Convex Programming[J].Journal Optim Theory Appl, 1999, 102(3) : 439 - 450.
  • 4Yang X M. On E Convex Set, E-Convex Function and E-Convex Programming [J]. Journal Optim Theory Appl, 2001 (109) : 699 - 703.
  • 5Chen X S. Some Properties of Semi-E-Convex Functions[J]. Journal Mathematical Analysis and Applications, 2002 (275) : 251 - 262.
  • 6Youness E A, Tarek Emam. Semi Strongly E-Convex Functions [J]. Journal Mathematical and Statistics, 2005, 1(1): 51 -57.
  • 7Youness E A. Optimality Criteria in E Convex Programming [J]. Journal of Chaos, Solitons & fractals, 2001(12): 1737 -1745.
  • 8MUIR J R. A Modification of the Roper-Suffridge Extension Operator [J]. Comput Methods Funct Theory, 2005, 5(1): 237-251.
  • 9MUIR J R, SUFFRIDGE T J. Unbounded Convex Mappings of the Ball in On [J]. Trans Amer Math Soc, 2001, 129(11): 3389-3393.
  • 10GRAHAM I, KOHR G. Univalent Mappings Associated with the Roper-Suffridge Extension Operator [J]. Anal Math, 2000, 81(1): 331-342.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部