摘要
对三种湿磨衬板钢的冲击腐蚀磨损性能与机制的研究结果表明:冲击功增大,其磨损失重呈不同程度的增大;在2 0J冲击功下,三种钢的磨损失重相差不大;2 7J与3 5J时低碳高合金钢的磨损失重明显较小。2 0J冲击功下,低碳高合金钢的磨损机制主要为显微切削,高锰钢主要为挤出硬化棱的疲劳剥落和腐蚀磨损,中碳合金钢主要为浅层小块脆性剥落和腐蚀磨损;2 7J冲击功下,低碳高合金钢主要为挤出硬化棱的剥落,高锰钢主要为块状疲劳剥落和较严重的腐蚀磨损,中碳合金钢主要为块状脆性剥落及严重的腐蚀磨损;3 5J冲击功下,低碳高合金钢主要为硬化层的疲劳剥落和腐蚀磨损,高锰钢主要为较深层的大块疲劳剥落和严重的腐蚀磨损,中碳合金钢主要为大块深层脆性剥落及严重的腐蚀磨损。
The impact corrosion and abrasion behavior of three steels for liner were investigated under different impact energy in ironstone slurry. The results show that their weight loss increases with increasing impact energy and approximate weight loss is observed for the three steels at impact energy of 2.0 J. At impact energy of 2.7 J and 3.5 J, the wear resistance of low carbon high alloy steel (LCHA) is the best. The failure mechanism depends on the materials and impact energy. At impact energy of 2.0 J, micro-cutting for LCHA, fatigue spalling of extruded hardened edge and corrosive wear for high manganese steel (HMN), small brittle spalling and corrosive wear for medium carbon alloy steel (MCA) are responsible for impact wear failure, respectived. At impact energy of 2.7 J, it is mainly spalling of extruded hardened edge for LCHA, primarily massive fatigue spalling and heavy corrosive wear for HMN and principally massive brittle spalling and heavier corrosive wear for MCA. At impact energy of 3.5 J, it is mainly fatigue spalling of work-hardened layer and corrosive wear for LCHA, primarily large fatigue spalling and heavy corrosive wear for HMN and large brittle spalling and heavy corrosive wear for MCA.
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2005年第2期55-60,共6页
Transactions of Materials and Heat Treatment
基金
教育部重点科研项目 (0 1 1 0 4 )
教育部博士点基金(2 0 0 4 0 3590 0 4 )
关键词
冲击腐蚀磨损
冲击功
磨损机制
Composition
Corrosion
Failure (mechanical)
Hardness
Heat treatment
Mechanical properties
Mechanisms
Wear resistance