期刊文献+

压缩搜索空间与速度范围粒子群优化算法 被引量:20

Particle Swarm Optimization with Contracted Ranges of Both Search Space and Velocity
在线阅读 下载PDF
导出
摘要 为了改善粒子群优化(PSO)算法的搜索性能,提出一种改进的粒子群算法CSV PSO算法·该算法在粒子群进化的过程中根据粒子群的最佳适应值动态地压缩粒子群的搜索空间与粒子群飞行速度范围;针对PSO算法可能出现的暂时停滞现象,引入分区重新初始化机制·数值仿真结果表明:随着粒子群进化,适当的压缩粒子群搜索空间与飞行速度范围,有利于加速算法收敛,提高收敛精度;该算法收敛速度更快,精度更高,运行更为稳定· To improve further the performance of PSO(Particle Swarm Optimization), a modified PSO algorithm is proposed and called CSV-PSO algorithm. Based on the best fitness of the particles, the ranges of both search space and velocity of the particles are contracted dynamically with the evolution of particle swarm in CSV-PSO algorithm. To avoid the possible occurence of stagnation phenomenon in the PSO algorithm, the re-initialization mechanism based on different search spaces is introduced in the CSV-PSO. Numerical examples show that it is of advantage to accelerating the algorithm's convergence and improving its calculation accuracy so as to contract appropriately the ranges of both search space and velocity of particles in evolutionary progress and the algorithm is easier for convergence, more accurate for calculation and more stable for running.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第5期488-491,共4页 Journal of Northeastern University(Natural Science)
基金 国家重点基础研究发展规划项目(2002CB412708) 国家杰出青年科学基金资助项目(50325414)
关键词 粒子群优化 群智能 进化计算 随机优化 自适应 particle swarm optimization swarm intelligence evolutionary computation stochastic optimization self-adapting
  • 相关文献

参考文献12

  • 1柯晶,钱积新.非线性离散时间系统的自适应函数观测器[J].电路与系统学报,2003,8(3):1-5. 被引量:2
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[A].Proc IEEE Int Conf Neural Networks [C]. Piscataway:IEEE Press, 1995. 1942 - 1948.
  • 3Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [ A ]. Proc of the Sixth International Symposium on Micro Machine and Human Science [ S ].Nagoya, 1955: 39 - 43.
  • 4Voss M S, Feng X. ARMA model selection using particle swarm optimization and AIC criteria[A]. 15th Triennial World Congress [ C]. Barcelona: IFAC, 2002.117 - 129.
  • 5van den Bergh F, Engelbrecht A P. Cooperative learning in neural networks using particle swarm optimizers [ J ]. South African Computer Journal, 2000 ( 11 ): 84 - 90.
  • 6董颖,唐加福,许宝栋,汪定伟.一种求解非线性规划问题的混合粒子群优化算法[J].东北大学学报(自然科学版),2003,24(12):1141-1144. 被引量:22
  • 7Shi Y H, Eberhart R C. A modified particle swarm optimizer[A]. IEEE World Congress on Computational Intelligence[C]. Anchorage, 1998.69 - 73.
  • 8Eberhart R C, Shi Y H. Comparing inertia weights and constriction factors in particle swarm optimization[ A]. Proc 2000 Congress Evolutionary Computation [C]. Piscataway:IEEE Press, 2000.84 - 88.
  • 9Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[A]. Proc of the 3rd Genetic and Evolutionary Computation Conference[C]. Sanfrancisco, 2001. 469 - 476.
  • 10Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [ A]. Proc 1999Congress Evolutionary Computation [C]. Piscataway: IEEE Press, 1999. 1951 - 1957.

二级参考文献29

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2Boutayeb M, Aubry D. A strong tracking extended Kalman observer for nonlinear discrete-time systems[J]. IEEE Trans. Automat. Contr.,1999, 44 (8): 1550 -1556.
  • 3Boutayeb M, Darouach M. A reduced-order observer for non-linear discrete-time systems[J]. Syst. Contr. Lett., 2000, 39(2): 141-151.
  • 4Azemi A, Yaz E E. LMI-based reduced-order observers for some discrete nonlinear systems[A], Proc. 36th IEEE Conf. Decision Control[C].San Diego, USA, 1997: 4808-4809.
  • 5Aubry D, Boutayeb M, Darouach M. A reduced-order extended Kalman observer for nonlinear discrete-time systems[A]. Proc. Symp.Nonlinear Control Systems [C]. Enschede, Netherlands, 1998: 263-268.
  • 6Zhou D H, Frank P M. Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: application to parameter estimation and empirical robustness analysis[J]. Int. J. Contr., 1996, 65(2): 295-307.
  • 7Gupta R D, Fairman F W, Hinamoto T. A direct procedure for the design of single functional observers [J]. IEEE Trans. Circuits Systems,1981, 28(4): 294-300.
  • 8Fairman F W, Gupta R D. Design of multifunctional reduced order observers [J]. Int. J. Systems Sci., 1980, 11 (9): 1083-1094.
  • 9Chen C T. Linear system theory and design[M]. New York: Holt, Rinehart and Winston, 1984, 369-371.
  • 10Song Y K, Grizzle J W. The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems[J]. J. Math. Syst. Estim.Contr., 1995, 5(1): 59-78.

共引文献471

同被引文献224

引证文献20

二级引证文献300

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部