期刊文献+

递归神经网络学习速率研究 被引量:2

Study of applied learning rates of recurrent neural networks
在线阅读 下载PDF
导出
摘要 针对典型的对角递归神经网络,推导出递归神经网络稳定条件下网络输出层、隐含层及关联层学习速率的具体取值范围。提出设计者可通过从具体系统中获得的数据确定网络各层学习速率的上、下界数值,确定自适应学习速率的初值与调节方法,并可选取最优学习速率。因而该法具有很强的可操作性和实用性。还给出一个具体数值实例,说明自适应学习速率与最佳学习速率的调整过程。 The bounds of learning rates in network's output layer, hidden layer and connected layer of diagonal recurrent neural networks are deduced in the condition of guaranteeing the stability of the networks. The contribution is given to a method that the bounds of learning rates in networks' different layers can be obtained by the data from the individual system, from which the initial value and method of adaptive learning rate can be confirmed and the optimum learning rates can be gained. The method proposed has good operability and practicability. A numerical demonstration to explain the procedure how to get the adaptive and optimum learning rates is given.
作者 戴谊 丛爽
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第5期942-947,共6页 Systems Engineering and Electronics
基金 安徽省自然科学基金资助课题(03042301)
关键词 对角递归神经网络 稳定性 自适应学习速率 recurrent dynamical networks stability adaptive learning rate
  • 相关文献

参考文献9

  • 1丛爽,戴谊.递归神经网络的结构研究[J].计算机应用,2004,24(8):18-20. 被引量:22
  • 2戴谊 丛爽.递归神经网络稳定性分析[A]..2004年中国控制与决策学术年会论文集[C].沈阳:东北大学出版社,2004.443-447.
  • 3Campolucci P,Uncini A.On-line learning algorithms for locally recurrent neural networks[J].IEEE Trans.on Neural Netwoks,1999. 10(2):253-271.
  • 4Narendra K S,Parthasarathy K.Identification and control of dynamical systems using neural networks[J].IEEE Trans.on Neural Netztoks, 1990,1(1):4-27.
  • 5Gori M,Bengio Y,Moil R D.BPS:a learning algorithm for capturing the dynamic nature of speech[J].Intern.Joint Conf.on Neural Networks, 1989,2:417-423.
  • 6Ku Chao-chee,Lee Kwang Y.Diagonal recurrent neural networks for ynamic systerrus control[J].IEEE Trans.on Neural Netwoks,1995,6(1): 144-156.
  • 7李远清,韦岗,刘永清.全连接回归神经网络的稳定性分析[J].控制理论与应用,2000,17(4):537-541. 被引量:2
  • 8Ren xuemei.Recurrent neural networks for identification of nonlinear systems[C].Proc.of the 39^th Conference on Decision and Control, 2000.2861-2866.
  • 9SimonHaykin 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..

二级参考文献13

  • 1[7]Elman J. Finding Structure in Time[J]. Cognitive Science ,1990, 14: 179-211.
  • 2[9]Poddar P, Unnikrishnan KP. Nonlinear prediction of speech signals using memory neuron networks[A]. Neural Networks for Signal Processing[C]. IEEE Press, 1991,31. 395-404.
  • 3[1]Lin T, Horne BG, Tino P, et al. Learning long-term dependencies in NARX recurrent neural networks[J]. IEEE Transactions on Neural Networks, 1996,7 (6):1329-1338.
  • 4[2]Jordan MI. Supervise learning and systems with excess degrees of freedom[R]. Massachusetts Institute of Technology: COINS Technical Report, 1988. 88-27.
  • 5[3]Tsoi AC, Back AD. Locally Recurrent Globally Feedforward Networks: A Critical Review of Architectures [J]. IEEE Transaction on Neural Networks, 1994, 5 (2): 229-239.
  • 6[4]Gori M, Bengio Y, Mori RD. BPS: A learning algorithm for capturing the dynamic nature of speech [A]. Internation Joint Conference on Neural Networks[C], 1989,2. 417-423.
  • 7[5]Frasconi P, Gori M, Soda G. Local feedback multilayered networks[J]. Neural Computation, 1992, 4(1): 120-130.
  • 8[6]Mozer MC. A focused back propagation algorithm for temporal pattern recognition[J]. Complex Systems, 1989, 3(4): 349-381.
  • 9韦岗,神经网络模型、学习及应用,1994年
  • 10张立明,人工神经网络的模型及其应用,1992年

共引文献110

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部