期刊文献+

带源项浅水方程的通量平衡离散 被引量:10

Flux balance method for shallow water equation with source terms
在线阅读 下载PDF
导出
摘要 以Roe的近似Riemann解为基础,将源项按特征方向进行特征分解,建立了带源项浅水方程的通量平衡Go dunov求解格式。此格式具有迎风的性质并保证了变宽、非平底坡浅水方程计算的和谐性和存在底摩擦时的收敛性。通过实例验证了此法具有和谐、健全、通用性好、分辨率高等优点。 Based on the Roe's approximate Riemann solver, this paper presents the flux balance Godunov scheme for the shallow water equation with source terms. The decomposed source terms in the characteristic directions and the Roe's average method are used in the source terms. The numerical experiments are suggest that this method can keep the flux balance at the interface and make the scheme harmonious, robust and high in resolution.
出处 《水科学进展》 EI CAS CSCD 北大核心 2005年第3期373-379,共7页 Advances in Water Science
关键词 浅水方程 源项 黎曼解 溃坝 有限体积 通量平衡 shallow water source terms Riemann solver dam break finite volume method flux balance
  • 相关文献

参考文献9

  • 1Zoppou C, Roberts S. Numerical solution of the two-dimensional unsteady dam break[J]. Applied Mathematical Modeling, 2000, 24:457-475.
  • 2潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解[J].水科学进展,2003,14(4):430-436. 被引量:48
  • 3Goutal N, Maurel F. Proceeding of the 2nd Workshop on Dam-Break Wave simulation[R]. Technical Report HE- 43/97/016/A.
  • 4Smolarkiewicz P K, Margolin L G. MPDATA: A finite-difference solver for geophysical flows[J]. J Comput Phys, 1998, 140:459 -480.
  • 5LeVeque R J. Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm [J].J Comput Phys, 1998, 146(1):346- 365.
  • 6Hubbart M E, Garcia-Navarro P. Flux Difference Splitting and the Balancing of Source Terms and Flux Gradients[J]. J Comput Phys, 2000,165:89- 125.
  • 7Jenny P, Muller B. Rankine-Hugoniot-Riemann solver considering source terms and multidimensional effects[J]. J Comput Phys, 1998, 145:575 - 610.
  • 8Garcia-Navarro P, Vazquez-Cendon M E. On numerical treatment of the source terms in the shallow water equations[J]. Computers & Fluids,2000, 29:951-979.
  • 9Tomas Chacon Rebollo, Nieto Fernandez, Macarena Gomez Marmol. A flux-splitting solver for shallow water equations with source terms[J].Int J Numer Meth Fluids, 2003, 42: 23 - 55.

二级参考文献20

  • 1EF Tom. Riemann solvers and numerial methods for fluid dynamics[M]. Berlin: Springer, 1999.
  • 2Marshall E, Mendez R. Computational aspects of the random choice method for shallow water equations[J]. J Comput Phys, 1981, 39:1 - 21.
  • 3EF Toro. Shock-capturing methods for flee-surface shallow flows[M]. Chichester: John Wiley & Sons, 2001.15- 165.
  • 4Glaister P. Approximate riemann solutions of the shallow water equations[J]. Journal of Hydraulic Research, 1988, 26(3): 293- 306.
  • 5Alcrudo F, Garcia-navarm P, Jose-Maria Saviron. Flux difference splitting for 1D open channel flow equations[J]. Int J Numer Meth Flu0ids,1992, 14: 1009-1018.
  • 6EF Tom. Riemann problems and the WAF method for solving the two-dimensioanl shallow water equations[J]. Phil Trans R Soc, Lond A,1992, 338 : 43 - 67.
  • 7Fraccamllo L, EF Toro. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problem[J].Journal of Hydraulic Research, 1995, 33(6) : 843 - 863.
  • 8Alcrudo F, Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for 2-D shallow-water equations[J]. Int J Numer Meth Fluids, 1993, 16: 489-505.
  • 9Hui WH, Kudriakov S. Computationa of the shallow water equations using the unified coordinates[J]. SIAM J Sci Comput, 2002, 23:1615-1 654.
  • 10Fujihara M, Borthwick AGL. Godunov-Type Solution of Curvilinear Shallow-Water Equations[J]. Journal of Hydraulic Engineering, 2000,126(11) : 827- 836.

共引文献47

同被引文献99

引证文献10

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部