期刊文献+

用含高色散性Boussinesq方程模拟潜堤上的波浪变形 被引量:2

Simulations of Waves propagation Over a Submerged Bar Using Boussinesq Equations with high Dispersion
在线阅读 下载PDF
导出
摘要 基于一种高阶Boussiensq方程(刘忠波等,2004),采用预报-校正格式的有限差分法对该方程进行了数值离散,建立了数值模型。针对动量方程中三阶项的差分形式,采用了迎风格式和五点格式。通过数值模拟常水深下不同周期波浪传播变形,指出迎风格式在计算小周期波浪时存在的问题。为进一步验证数值模型的适用性,模拟了淹没潜堤上的传播变形。从数值结果与实验值的对比结果上看,该数值模型能较好地模拟波浪变形,可用于模拟实际中的波浪场问题。 Based on the Boussinesq equations derived by Liu and Sun (2004), a numerical model is established by using finite difference method. Special focus is paid on the up-wind scheme and five-point scheme on the third derivation terms. To point the problem when using the up-wind scheme, a numerical simulation of short wave propagation over a constant depth is done. To investigate the applicability of the numerical model, further numerical simulations of wave propagating over a submerged bar are done. The well agreement between the numerical results and the experimental results proves the numerical model, so the numerical model can be used for simulating the wave field in the coastal engineering.
出处 《海洋技术》 2005年第2期66-68,120,共4页 Ocean Technology
基金 国家自然科学基金项目(50409015)
关键词 BOUSSINESQ方程 波浪变形 潜堤 色散性 数值模型 迎风格式 有限差分法 数值离散 动量方程 波浪传播 数值模拟 数值结果 适用性 实验值 场问题 周期 Boussinesq equations numerical model up-wind scheme five-point scheme wave propagation submerged bar
  • 相关文献

参考文献3

二级参考文献15

  • 1邹志利,张晓莉.Numerical Models of Higher-Order Boussinesq Equations and Comparisons with Laboratory Measurement[J].China Ocean Engineering,2001,16(2):229-240. 被引量:6
  • 2刘忠波,孙昭晨,张日向.新型高阶Boussinesq水波方程[J].水利学报,2004,35(10):83-88. 被引量:5
  • 3Peregrine D H.Long waves on a beach[J].J.Fluid Mech,1967,27(4):815-827.
  • 4Witting J M.A unified model for the evolution of nonlinear water waves[J].J.Comp.Phys,1984,56:203-236.
  • 5Beji S,Nadaoka K.A formal derivation and numerical model of the improved Boussinesq Equations for varying detph[J].Ocean Eng,1996,23(8):691-704.
  • 6Nwogu O.An alternative form of the Boussinesq Equations for near shore wave propagation[J].J.Wtrwy.,Port,Coast.and Oc.Engrg.,1993,119(6):618-638.
  • 7Hermming A,Schaffer,Per A Madsen.Further enhancements of Boussinesq-type Equations[J].Coastal Eng.,1995,26:1-14.
  • 8Li Y S,Liu S X,Yu Y X,Lai G Z.Numerical modeling of Boussinesq Equations by finite element method[J].Coastal Eng.,1999,37:97-122.
  • 9Wei G,Kirby T.Time-dependent numerical code for extended Boussinesq Equations[J].J.Wtrwy.Port,Coast.Oc.Eng.,ASCE,1995,121(5):251-261.
  • 10Woo S B,Liu PL F.A Petrov-Galerkin finite element model for one-dimensional fully non-linear and weakly dispersive wave propagation[J].Int.J.for Numerical methods in Fluids,2001,37:541-575.

共引文献14

同被引文献18

  • 1周援衡,陈智杰,卢海斌,贾存兴.非线性波与可渗潜堤的相互作用数值模拟[J].水运工程,2005(3):8-12. 被引量:8
  • 2嵇春艳.调谐质量阻尼器对海洋平台的减振效果分析[J].海洋技术,2005,24(2):114-120. 被引量:10
  • 3刘诚,刘晓平,蒋昌波.Numerical Simulation of Wave Field near Submerged Bars by PLIC-VOF Model[J].China Ocean Engineering,2005,19(3):509-518. 被引量:9
  • 4Stephan T Grilli, Miguel A Losada, Francisco Martin. Characteristics of solitary wave breaking induced by breakwaters [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1994,120(1) : 74-92.
  • 5Losada I J, Silva R, Imada M A. 3-D non-breaking regular wave interaction with submerged breakwaters[J].Coastal Engineering, 1996, (28) : 229-248.
  • 6Losada I J, Silva R, Imada M A. Interaction of nonbreaking directional random wave with submerged breakwaters[J]. Coastal Engineering, 1996, (28) : 249-266.
  • 7Nobuhisa Kobayashi, Leslie E Meigs, Takao Ota, et al. Irregular breaking wave transmission over submerged porous breakwater[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2007, (3) : 104-116.
  • 8Hur Dong-Soo, Kawashima N, Iwata K. Experimental study of the breaking limit of multi-directional random wave passing over an impermeable subs merged breakwater [J].Ocean Engineering, 2003, (30) : 1923-1940.
  • 9Hur Dong-Soo. Deformation of multi-directional ran-dom wave passing over an impermeable submerged breakwater installed on a sloping bed[J]. Ocean En- gineering, 2004, (31) : 1295-1311.
  • 10Patrick Lynett. A multi-layer approach to modeling generation propagation and interaction of water waves[D]. USA:Cornell University,2002.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部